Skip to main content

Advertisement

Log in

Therapeutic Effects of Mesenchymal Stem Cells Derived From Bone Marrow, Umbilical Cord Blood, and Pluripotent Stem Cells in a Mouse Model of Chemically Induced Inflammatory Bowel Disease

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Acute inflammatory bowel disease (AIBD) is a wide clinical entity including severe gastrointestinal pathologies with common histopathological basis. Epidemiologically increasing diseases, such as necrotizing enterocolitis (NEC), gastrointestinal graft versus host disease (GVHD), and the primary acute phase of chronic inflammatory bowel disease (CIBD), exhibit a high necessity for new therapeutic strategies. Mesenchymal stem cell (MSC) cellular therapy represents a promising option for the treatment of these diseases. In our study, we comparatively assess the efficacy of human MSCs derived from bone marrow (BM), umbilical cord blood (UCB), human embryonic stem cells (ESCs), or human-induced pluripotent stem cells (iPSCs) in a mouse model of chemically induced acute enterocolitis. The laboratory animals were provided ad libitum potable dextrane sulfate sodium solution (DSS) in order to reproduce an AIBD model and then individually exposed intraperitoneally to MSCs derived from BM (BM-MSCs), UCB (UCB-MSCs), ESCs (ESC-MSCs), or iPSCs (iPSC-MSCs). The parameters used to evaluate the cellular treatment efficacy were the animal survival prolongation and the histopathological-macroscopic picture of bowel sections. Although all categories of mesenchymal stem cells led to statistically significant survival prolongation compared to the control group, significant clinical and histopathological improvement was observed only in mice receiving BM-MSCs and UCB-MSCs. Our results demonstrated that the in vivo anti-inflammatory effect of ESC-MSCs and iPSC-MSCs was inferior to that of UCB-MSCs and BM-MSCs. Further investigation will clarify the potential of ESCs and iPSC-derived MSCs in AIBD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Duci, Miriam, Francesco Fascetti-Leon, Marta Erculiani, Elena Priante, Maria Elena Cavicchiolo, Giovanna Verlato, and Piergiorgio Gamba. 2018. Neonatal independent predictors of severe NEC. Pediatric Surgery International 34: 663–669. https://doi.org/10.1007/s00383-018-4261-1.

    Article  PubMed  Google Scholar 

  2. Boghossian, Nansi S., Marco Geraci, Erika M. Edwards, and Jeffrey D. Horbar. 2018. Neonatal and fetal growth charts to identify preterm infants <30 weeks gestation at risk of adverse outcomes. American Journal of Obstetrics and Gynecology 219: 195.e1–195.e14. https://doi.org/10.1016/j.ajog.2018.05.002.

    Article  Google Scholar 

  3. Manjili, Masoud H., and Amir A. Toor. 2014. Etiology of GVHD: Alloreactivity or Impaired Cellular Adaptation? Immunological Investigations 43: 851–857. https://doi.org/10.3109/08820139.2014.953636.

    Article  PubMed  Google Scholar 

  4. Na, K.-S., Y.-S. Yoo, J.W. Mok, J.W. Lee, and C.-K. Joo. 2015. Incidence and risk factors for ocular GVHD after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplantation 50: 1459–1464.

    Article  CAS  PubMed  Google Scholar 

  5. Scarisbrick, J.J., F.L. Dignan, S. Tulpule, E.D. Gupta, S. Kolade, B. Shaw, F. Evison, et al. 2014. A multicentre UK study of GVHD following DLI: Rates of GVHD are high but mortality from GVHD is infrequent. Bone Marrow Transplantation 50: 62.

    Article  CAS  PubMed  Google Scholar 

  6. Ananthakrishnan, Ashwin N. 2015. Epidemiology and risk factors for IBD. Nature Reviews Gastroenterology & Hepatology 12: 205.

    Article  Google Scholar 

  7. Kaplan, Gilaad G. 2014. Global variations in environmental risk factors for IBD. Nature Reviews Gastroenterology & Hepatology 11: 708.

    Article  Google Scholar 

  8. Ng, Siew C., Charles N. Bernstein, Morten H. Vatn, Peter Laszlo Lakatos, Edward V. Loftus, Curt Tysk, Colm O’Morain, Bjorn Moum, and Jean-Frédéric Colombel. 2013. Geographical variability and environmental risk factors in inflammatory bowel disease. Gut 62: 630–649. https://doi.org/10.1136/gutjnl-2012-303661.

    Article  PubMed  Google Scholar 

  9. Aloi, Marina, Federica Nuti, Laura Stronati, and Salvatore Cucchiara. 2013. Advances in the medical management of paediatric IBD. Nature Reviews Gastroenterology & Hepatology 11: 99.

    Article  CAS  Google Scholar 

  10. Crisan, Mihaela, Chien-Wen Chen, Mirko Corselli, Gabriella Andriolo, Lorenza Lazzari, and Bruno Péault. 2009. Perivascular multipotent progenitor cells in human organs. Annals of the New York Academy of Sciences 1176: 118–123. https://doi.org/10.1111/j.1749-6632.2009.04967.x.

    Article  CAS  PubMed  Google Scholar 

  11. Hass, Ralf, Cornelia Kasper, Stefanie Böhm, and Roland Jacobs. 2011. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Communication and Signaling: CCS 9: 12. https://doi.org/10.1186/1478-811X-9-12.

    Article  CAS  Google Scholar 

  12. Pittenger, M.F., A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca, M.A. Moorman, D.W. Simonetti, S. Craig, and D.R. Marshak. 1999. Multilineage potential of adult human mesenchymal stem cells. Science (New York, N.Y.) 284: 143–147.

    Article  CAS  Google Scholar 

  13. Uccelli, Antonio, Lorenzo Moretta, and Vito Pistoia. 2006. Immunoregulatory function of mesenchymal stem cells. European Journal of Immunology 36: 2566–2573. https://doi.org/10.1002/eji.200636416.

    Article  CAS  PubMed  Google Scholar 

  14. Munneke, J. Marius, Melchior J.A. Spruit, Anne S. Cornelissen, Vera van Hoeven, Carlijn Voermans, and Mette D. Hazenberg. 2016. The Potential of Mesenchymal Stromal Cells as Treatment for Severe Steroid-Refractory Acute Graft-Versus-Host Disease: A Critical Review of the Literature. Transplantation 100: 2309–2314. https://doi.org/10.1097/TP.0000000000001029.

    Article  CAS  PubMed  Google Scholar 

  15. Sharma, Ratti Ram, Kathryn Pollock, Allison Hubel, and David McKenna. 2014. Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion 54: 1418–1437. https://doi.org/10.1111/trf.12421.

    Article  CAS  PubMed  Google Scholar 

  16. Liu, Cai Xia, Ren Li Zhang, Jun Gao, Tao Li, Zi Ren, Can Quan Zhou, and An Min Wen. 2014. Derivation of human embryonic stem cell lines without any exogenous growth factors. Molecular Reproduction and Development 81: 470–479. https://doi.org/10.1002/mrd.22312.

    Article  CAS  PubMed  Google Scholar 

  17. Takahashi, Kazutoshi, and Shinya Yamanaka. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–676. https://doi.org/10.1016/j.cell.2006.07.024.

    Article  CAS  Google Scholar 

  18. Chami, Belal, Amanda W.S. Yeung, Caryn van Vreden, Nicholas J.C. King, and Shisan Bao. 2014. The role of CXCR3 in DSS-induced colitis. PLoS One 9: e101622. https://doi.org/10.1371/journal.pone.0101622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, B., R. Alli, P. Vogel, and T.L. Geiger. 2014. IL-10 modulates DSS-induced colitis through a macrophage-ROS-NO axis. Mucosal Immunology 7: 869–878. https://doi.org/10.1038/mi.2013.103.

    Article  CAS  PubMed  Google Scholar 

  20. Secunda, R., Vennila Rosy, A.M. Mohanashankar, M. Rajasundari, S. Jeswanth, and R. Surendran. 2015. Isolation, expansion and characterisation of mesenchymal stem cells from human bone marrow, adipose tissue, umbilical cord blood and matrix: a comparative study. Cytotechnology 67: 793–807. https://doi.org/10.1007/s10616-014-9718-z.

    Article  CAS  PubMed  Google Scholar 

  21. Luo, H.J., X.M. Xiao, J. Zhou, and W. Wei. 2015. Therapeutic influence of intraperitoneal injection of Wharton’s jelly-derived mesenchymal stem cells on oviduct function and fertility in rats with acute and chronic salpingitis. Genetics and molecular research: GMR 14: 3606–3617. https://doi.org/10.4238/2015.April.17.10.

    Article  CAS  PubMed  Google Scholar 

  22. Sun, Xue-cheng, Jian-sheng Wu, Jin-ming Wu, Zhi-ming Huang, and Yu. Zhen. 2013. Effects of intraperitoneal injection of marrow mesenchymal stem cells on intestinal barrier in acute pancreatitis. Zhonghua Yi Xue Za Zhi 93: 951–955.

    CAS  PubMed  Google Scholar 

  23. Parys, M., N. Nelson, K. Koehl, R. Miller, J.B. Kaneene, J.M. Kruger, and V. Yuzbasiyan-Gurkan. 2016. Safety of Intraperitoneal Injection of Adipose Tissue-Derived Autologous Mesenchymal Stem Cells in Cats. Journal of Veterinary Internal Medicine 30: 157–163. https://doi.org/10.1111/jvim.13655.

    Article  CAS  PubMed  Google Scholar 

  24. Liu, Jingquan, Bin Shi, Kai Shi, and Hongze Zhang. 2015. Applications of induced pluripotent stem cells in the modeling of human inflammatory bowel diseases. Current Stem Cell Research & Therapy 10: 228–235.

    Article  CAS  Google Scholar 

  25. Algeri, M., A. Conforti, A. Pitisci, N. Starc, L. Tomao, M.E. Bernardo, and F. Locatelli. 2015. Mesenchymal stromal cells and chronic inflammatory bowel disease. Immunology Letters 168: 191–200. https://doi.org/10.1016/j.imlet.2015.06.018.

    Article  CAS  PubMed  Google Scholar 

  26. Pérez-Merino, E.M., J.M. Usón-Casaús, C. Zaragoza-Bayle, J. Duque-Carrasco, L. Mariñas-Pardo, M. Hermida-Prieto, R. Barrera-Chacón, and M. Gualtieri. 2015. Safety and efficacy of allogeneic adipose tissue-derived mesenchymal stem cells for treatment of dogs with inflammatory bowel disease: Clinical and laboratory outcomes. Veterinary Journal (London, England: 1997) 206: 385–390. https://doi.org/10.1016/j.tvjl.2015.08.003.

    Article  CAS  Google Scholar 

  27. Pérez-Merino, E.M., J.M. Usón-Casaús, J. Duque-Carrasco, C. Zaragoza-Bayle, L. Mariñas-Pardo, M. Hermida-Prieto, M. Vilafranca-Compte, R. Barrera-Chacón, and M. Gualtieri. 2015. Safety and efficacy of allogeneic adipose tissue-derived mesenchymal stem cells for treatment of dogs with inflammatory bowel disease: Endoscopic and histological outcomes. Veterinary Journal (London, England: 1997) 206: 391–397. https://doi.org/10.1016/j.tvjl.2015.07.023.

    Article  CAS  Google Scholar 

  28. García-Arranz, Mariano, Maria Dolores Herreros, Carolina González-Gómez, Paloma de la Quintana, Héctor Guadalajara, Tihomir Georgiev-Hristov, Jacobo Trébol, and Damián Garcia-Olmo. 2016. Treatment of Crohn’s-Related Rectovaginal Fistula With Allogeneic Expanded-Adipose Derived Stem Cells: A Phase I-IIa Clinical Trial. Stem Cells Translational Medicine 5: 1441–1446. https://doi.org/10.5966/sctm.2015-0356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peng, Kaiyue, Xiaowen Qian, Zhiheng Huang, Junping Lu, Yuhuan Wang, Ying Zhou, Huijun Wang, Bingbing Wu, Ying Wang, Lingli Chen, Xiaowen Zhai, and Ying Huang. 2018. Umbilical Cord Blood Transplantation Corrects Very Early-Onset Inflammatory Bowel Disease in Chinese Patients With IL10RA-Associated Immune Deficiency. Inflammatory Bowel Diseases 24: 1416–1427. https://doi.org/10.1093/ibd/izy028.

    Article  PubMed  Google Scholar 

  30. Qu, Bo, Guo-Rong Xin, Li-Xia Zhao, Hui Xing, Li-Ying Lian, Hai-Yan Jiang, Jia-Zhao Tong, Bei-Bei Wang, and Shi-Zhu Jin. 2014. Testing stem cell therapy in a rat model of inflammatory bowel disease: role of bone marrow stem cells and stem cell factor in mucosal regeneration. PLoS One 9: e107891. https://doi.org/10.1371/journal.pone.0107891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park, Jin Seok, Tac-Ghee Yi, Jong-Min Park, Young Min Han, Jun-Hyung Kim, Dong-Hee Shin, Seon Ji Tak, Kyuheon Lee, Youn Sook Lee, Myung-Shin Jeon, Ki-Baik Hahm, Sun U. Song, and Seok Hee Park. 2015. Therapeutic effects of mouse bone marrow-derived clonal mesenchymal stem cells in a mouse model of inflammatory bowel disease. Journal of Clinical Biochemistry and Nutrition 57: 192–203. https://doi.org/10.3164/jcbn.15-56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fujino, Masayuki, Ping Zhu, Yusuke Kitazawa, Ji-Mei Chen, Jian Zhuang, and Xiao-Kang Li. 2014. Mesenchymal stem cells attenuate rat graft-versus-host disease. Methods in Molecular Biology (Clifton, N.J.) 1213: 341–353. https://doi.org/10.1007/978-1-4939-1453-1_28.

    Article  CAS  Google Scholar 

  33. Eaton, Simon, Augusto Zani, Agostino Pierro, and Paolo De Coppi. 2013. Stem cells as a potential therapy for necrotizing enterocolitis. Expert Opinion on Biological Therapy 13: 1683–1689. https://doi.org/10.1517/14712598.2013.849690.

    Article  CAS  PubMed  Google Scholar 

  34. Drucker, Natalie A., Christopher J. McCulloh, Bo Li, Agostino Pierro, Gail E. Besner, and Troy A. Markel. 2018. Stem cell therapy in necrotizing enterocolitis: Current state and future directions. Seminars in Pediatric Surgery 27: 57–64. https://doi.org/10.1053/j.sempedsurg.2017.11.011.

    Article  PubMed  Google Scholar 

  35. Zani, Augusto, Mara Cananzi, Giuseppe Lauriti, Francesco Fascetti-Leon, Jack Wells, Bernard Siow, Mark F. Lythgoe, Agostino Pierro, Simon Eaton, and Paolo De Coppi. 2014. Amniotic fluid stem cells prevent development of ascites in a neonatal rat model of necrotizing enterocolitis. European Journal of Pediatric Surgery: Official Journal of Austrian Association of Pediatric Surgery ... [et Al] = Zeitschrift Fur Kinderchirurgie 24: 57–60. https://doi.org/10.1055/s-0033-1350059.

    Article  Google Scholar 

  36. Hynes, K., R. Bright, V. Marino, J. Ng, P.J. Verma, S. Gronthos, and P.M. Bartold. 2018. Potential of iPSC-Derived Mesenchymal Stromal Cells for Treating Periodontal Disease. Stem Cells International 2018: 2601945–2601912. https://doi.org/10.1155/2018/2601945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Soontararak, Sirikul, Lyndah Chow, Valerie Johnson, Jonathan Coy, William Wheat, Daniel Regan, and Steven Dow. 2018. Mesenchymal Stem Cells (MSC) Derived from Induced Pluripotent Stem Cells (iPSC) Equivalent to Adipose-Derived MSC in Promoting Intestinal Healing and Microbiome Normalization in Mouse Inflammatory Bowel Disease Model. Stem Cells Translational Medicine 7: 456–467. https://doi.org/10.1002/sctm.17-0305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

G.E., T.M., K.E.: conception and design, provision of study material manuscript writing, final approval of manuscript, scientific guidance K.A, V.I., S.I., M.A.: mesenchymal stem cell derivation P.E.: provision of experimental surgery structures and animal model design, D.E.: histopathological evaluation and over all special contribution to my father Kagias Dimitrios for his continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Argyro Kagia.

Ethics declarations

The animal experiments were conducted under protocols reviewed and approved by Institutional Animal Care and Use Committee (Athens, Protocol Number K/5449). All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted.

Conflict of Interest

The authors declare that they have no conflict of interest.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kagia, A., Tzetis, M., Kanavakis, E. et al. Therapeutic Effects of Mesenchymal Stem Cells Derived From Bone Marrow, Umbilical Cord Blood, and Pluripotent Stem Cells in a Mouse Model of Chemically Induced Inflammatory Bowel Disease. Inflammation 42, 1730–1740 (2019). https://doi.org/10.1007/s10753-019-01033-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-019-01033-x

KEY WORDS

Navigation