Skip to main content

Advertisement

Log in

Differential Macrophage Subsets in Muscle Damage Induced by a K49-PLA2 from Bothrops jararacussu Venom Modulate the Time Course of the Regeneration Process

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Bothrops snakes cause around 80% of snakebites in Brazil, with muscle tissue damage as an important consequence, which may cause dysfunction on the affected limb. Bothropstoxin-I (BthTX-I) from Bothrops jararacussu is a K49-phospholipase A2, involved in the injury and envenomation’s inflammatory response. Immune system components act in the resolution of tissue damage and regeneration. Thus, macrophages exert a crucial role in the elimination of dead tissue and muscle repair. Here, we studied the cellular influx and presence of classical and alternative macrophages (M1 and M2) during muscle injury induced by BthTX-I and the regeneration process. BthTX-I elicited intense inflammatory response characterized by neutrophil migration, then increased influx of M1 macrophages followed by M2 population that declined, resulting in tissue regeneration. The high expressions of TNF-α and IL6 were changed by increased TGF-β expression after BthTX-I injection, coinciding with the iNOs and arginase expression and the peaks of M1 and M2 macrophages in muscle tissue. A coordinated sequence of PAX7, MyoD, and myogenin expression involved in muscle regenerative process appeared after BthTX-I injection. Together, these results demonstrate a direct correlation between the macrophage subsets, cytokine microenvironment, and the myogenesis process. This information may be useful for new envenomation and muscular dysfunction therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tidball, J.G., and S.A. Villalta. 2010. Regulatory interactions between muscle and the immune system during muscle regeneration. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 298: R1173–R1187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gutiérrez, J.M. 2012. Improving antivenom availability and accessibility: science, technology, and beyond. Toxicon 60: 676–687.

    Article  CAS  PubMed  Google Scholar 

  3. Williams, D., J.M. Gutiérrez, R. Harrison, D.A. Warrell, J. White, K.D. Winkel, and P. Gopalakrishnakone. 2010. The Global Snake Bite Initiative: an antidote for snake bite. Lancet 375: 89–91.

    Article  PubMed  Google Scholar 

  4. Otero, R., J. Gutiérrez, M. Beatriz Mesa, E. Duque, O. Rodríguez, J. Luis Arango, et al. 2002. Complications of Bothrops, Porthidium, and Bothriechis snakebites in Colombia. A clinical and epidemiological study of 39 cases attended in a university hospital. Toxicon 40: 1107–1114.

    Article  CAS  PubMed  Google Scholar 

  5. Gutiérrez, J.M., T. Escalante, and A. Rucavado. 2009. Experimental pathophysiology of systemic alterations induced by Bothrops asper snake venom. Toxicon 54: 976–987.

    Article  CAS  PubMed  Google Scholar 

  6. Bjarnason, J.B., and J.W. Fox. 1994. Hemorrhagic metalloproteinases from snake venoms. Pharmacology & Therapeutics 62: 325–372.

    Article  CAS  Google Scholar 

  7. Kamiguti, A.S., J.R. Slupsky, M. Zuzel, and C.R. Hay. 1994. Properties of fibrinogen cleaved by Jararhagin, a metalloproteinase from the venom of Bothrops jararaca. Thrombosis and Haemostasis 72: 244–249.

    Article  CAS  PubMed  Google Scholar 

  8. Kamiguti, A.S., C.R. Hay, R.D. Theakston, and M. Zuzel. 1996. Insights into the mechanism of haemorrhage caused by snake venom metalloproteinases. Toxicon 34: 627–642.

    Article  CAS  PubMed  Google Scholar 

  9. Gutiérrez, J.M., and C.L. Ownby. 2003. Skeletal muscle degeneration induced by venom phospholipases A2: insights into the mechanisms of local and systemic myotoxicity. Toxicon 42: 915–931.

    Article  CAS  PubMed  Google Scholar 

  10. Lomonte, B., Y. Angulo, and L. Calderón. 2003. An overview of lysine-49 phospholipase A2 myotoxins from crotalid snake venoms and their structural determinants of myotoxic action. Toxicon 42: 885–901.

    Article  CAS  PubMed  Google Scholar 

  11. Homsi-Brandeburgo, M.I., L.S. Queiroz, H. Santo-Neto, L. Rodrigues-Simioni, and J.R. Giglio. 1988. Fractionation of Bothrops jararacussu snake venom: partial chemical characterization and biological activity of bothropstoxin. Toxicon 26: 615–627.

    Article  CAS  PubMed  Google Scholar 

  12. Cintra, A.C., S. Marangoni, B. Oliveira, and J.R. Giglio. 1993. Bothropstoxin-I: amino acid sequence and function. Journal of Protein Chemistry 12: 57–64.

    Article  CAS  PubMed  Google Scholar 

  13. Rodrigues-Simioni, L., N. Borgese, and B. Ceccarelli. 1983. The effects of Bothrops jararacussu venom and its components on frog nerve-muscle preparation. Neuroscience 10: 475–489.

    Article  CAS  PubMed  Google Scholar 

  14. Heluany, N.F., M.I. Homsi-Brandeburgo, J.R. Giglio, J. Prado-Franceschi, and L. Rodrigues-Simioni. 1992. Effects induced by bothropstoxin, a component from Bothrops jararacussu snake venom, on mouse and chick muscle preparations. Toxicon 30: 1203–1210.

    Article  CAS  PubMed  Google Scholar 

  15. Johnson, E.K., and C.L. Ownby. 1994. The role of extracellular ions in the pathogenesis of myonecrosis induced by a myotoxin isolated from broad-banded copperhead (Agkistrodon contortrix laticinctus) venom. Comparative Biochemistry and Physiology. Pharmacology, Toxicology and Endocrinology 107: 359–366.

    Article  CAS  PubMed  Google Scholar 

  16. Incerpi, S., P. de Vito, P. Luly, and S. Rufini. 1995. Effect of ammodytin L from Vipera ammodytes on L-6 cells from rat skeletal muscle. Biochimica et Biophysica Acta 1268: 137–142.

    Article  PubMed  Google Scholar 

  17. Cintra-Francischinelli, M., P. Pizzo, L. Rodrigues-Simioni, L.A. Ponce-Soto, O. Rossetto, B. Lomonte, J.M. Gutiérrez, T. Pozzan, and C. Montecucco. 2009. Calcium imaging of muscle cells treated with snake myotoxins reveals toxin synergism and presence of acceptors. Cellular and Molecular Life Sciences 66: 1718–1728.

    Article  CAS  PubMed  Google Scholar 

  18. Soares, A.M., W.P. Sestito, S. Marcussi, R.G. Stábeli, S.H. Andrião-Escarso, O.A. Cunha, et al. 2004. Alkylation of myotoxic phospholipases A2 in Bothrops moojeni venom: a promising approach to an enhanced antivenom production. The International Journal of Biochemistry & Cell Biology 36: 258–270.

    Article  CAS  Google Scholar 

  19. Doin-Silva, R., V. Baranauskas, L. Rodrigues-Simioni, and M.A. da Cruz-Höfling. 2009. The ability of low level laser therapy to prevent muscle tissue damage induced by snake venom. Photochemistry and Photobiology 85: 63–69.

    Article  CAS  PubMed  Google Scholar 

  20. Schiaffino, S., C. Mammucari, and M. Sandri. 2008. The role of autophagy in neonatal tissues: just a response to amino acid starvation? Autophagy 4: 727–730.

    Article  CAS  PubMed  Google Scholar 

  21. Saclier, M., S. Cuvellier, M. Magnan, R. Mounier, and B. Chazaud. 2013. Monocyte/macrophage interactions with myogenic precursor cells during skeletal muscle regeneration. The FEBS Journal 280: 4118–4130.

    Article  CAS  PubMed  Google Scholar 

  22. Gordon, S., and F.O. Martinez. 2010. Alternative activation of macrophages: mechanism and functions. Immunity 32: 593–604.

    Article  CAS  PubMed  Google Scholar 

  23. Gordon, S., and P.R. Taylor. 2005. Monocyte and macrophage heterogeneity. Nature Reviews. Immunology 5: 953–964.

    Article  CAS  PubMed  Google Scholar 

  24. Mantovani, A., S. Sozzani, M. Locati, P. Allavena, and A. Sica. 2002. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology 23: 549–555.

    Article  CAS  PubMed  Google Scholar 

  25. Mantovani, A., A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati. 2004. The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology 25: 677–686.

    Article  CAS  PubMed  Google Scholar 

  26. Wehling-Henricks, M., J.J. Lee, and J.G. Tidball. 2004. Prednisolone decreases cellular adhesion molecules required for inflammatory cell infiltration in dystrophin-deficient skeletal muscle. Neuromuscular Disorders 14: 483–490.

    Article  PubMed  Google Scholar 

  27. Martinez, F.O., and S. Gordon. 2014. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6: 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. St Pierre, B.A., and J.G. Tidball. 1994. Differential response of macrophage subpopulations to soleus muscle reloading after rat hindlimb suspension. Journal of Applied Physiology (Bethesda, MD: 1985) 77: 290–297.

    Article  CAS  Google Scholar 

  29. Tidball, J.G., E. Berchenko, and J. Frenette. 1999. Macrophage invasion does not contribute to muscle membrane injury during inflammation. Journal of Leukocyte Biology 65: 492–498.

    Article  CAS  PubMed  Google Scholar 

  30. Schwartz, YSh, and A.V. Svistelnik. 2012. Functional phenotypes of macrophages and the M1-M2 polarization concept. Part I. Proinflammatory phenotype. Biochemistry (Moscow) 77: 246–260.

    Article  CAS  Google Scholar 

  31. Moura-da-Silva, A.M., H. Desmond, G. Laing, and R.D. Theakston. 1991. Isolation and comparison of myotoxins isolated from venoms of different species of Bothrops snakes. Toxicon 29: 713–723.

    Article  CAS  PubMed  Google Scholar 

  32. Overbergh, L., D. Valckx, M. Waer, and C. Mathieu. 1999. Quantification of murine cytokine mRNAs using real time quantitative reverse transcriptase PCR. Cytokine 11: 305–312.

    Article  CAS  PubMed  Google Scholar 

  33. Cornelison, D.D., and B.J. Wold. 1997. Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Developmental Biology 191: 270–283.

    Article  CAS  PubMed  Google Scholar 

  34. Murray, P.J., J.E. Allen, S.K. Biswas, E.A. Fisher, D.W. Gilroy, S. Goerdt, S. Gordon, J.A. Hamilton, L.B. Ivashkiv, T. Lawrence, M. Locati, A. Mantovani, F.O. Martinez, J.L. Mege, D.M. Mosser, G. Natoli, J.P. Saeij, J.L. Schultze, K.A. Shirey, A. Sica, J. Suttles, I. Udalova, J.A. van Ginderachter, S.N. Vogel, and T.A. Wynn. 2014. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41: 14–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Munder, M., K. Eichmann, J.M. Morán, F. Centeno, G. Soler, and M. Modolell. 1999. Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells. Journal of Immunology 163: 3771–3777.

    CAS  Google Scholar 

  36. Arce, V., F. Brenes, and J.M. Gutiérrez. 1991. Degenerative and regenerative changes in murine skeletal muscle after injection of venom from the snake Bothrops asper: a histochemical and immunocytochemical study. International Journal of Experimental Pathology 72: 211–226.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ciciliot, S., and S. Schiaffino. 2010. Regeneration of mammalian skeletal muscle. Basic mechanisms and clinical implications. Current Pharmaceutical Design 16: 906–914.

    Article  CAS  PubMed  Google Scholar 

  38. Le Grand, F., and M.A. Rudnicki. 2007. Skeletal muscle satellite cells and adult myogenesis. Current Opinion in Cell Biology 19: 628–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jung, S., J. Aliberti, P. Graemmel, M.J. Sunshine, G.W. Kreutzberg, A. Sher, and D.R. Littman. 2000. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Molecular and Cellular Biology 20: 4106–4114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Choi, J., M.L. Costa, C.S. Mermelstein, C. Chagas, S. Holtzer, and H. Holtzer. 1990. MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes. Proceedings of the National Academy of Sciences of the United States of America 87: 7988–7992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kassar-Duchossoy, L., B. Gayraud-Morel, D. Gomès, D. Rocancourt, M. Buckingham, V. Shinin, and S. Tajbakhsh. 2004. Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature 431: 466–471.

    Article  CAS  PubMed  Google Scholar 

  42. Kamiguti, A.S., R.D. Theakston, H. Desmond, and R.A. Hutton. 1991. Systemic haemorrhage in rats induced by a haemorrhagic fraction from Bothrops jararaca venom. Toxicon 29: 1097–1105.

    Article  CAS  PubMed  Google Scholar 

  43. Paine, M.J., H.P. Desmond, R.D. Theakston, and J.M. Crampton. 1992. Purification, cloning, and molecular characterization of a high molecular weight hemorrhagic metalloprotease, jararhagin, from Bothrops jararaca venom. Insights into the disintegrin gene family. The Journal of Biological Chemistry 267: 22869–22876.

    CAS  PubMed  Google Scholar 

  44. Moura-da-Silva, A.M., R.D. Theakston, and J.M. Crampton. 1996. Evolution of disintegrin cysteine-rich and mammalian matrix-degrading metalloproteinases: gene duplication and divergence of a common ancestor rather than convergent evolution. Journal of Molecular Evolution 43: 263–269.

    Article  CAS  PubMed  Google Scholar 

  45. Moura-da-Silva, A.M., O.H. Ramos, C. Baldo, S. Niland, U. Hansen, J.S. Ventura, et al. 2008. Collagen binding is a key factor for the hemorrhagic activity of snake venom metalloproteinases. Biochimie 90: 484–492.

    Article  CAS  PubMed  Google Scholar 

  46. Arnold, L., A. Henry, F. Poron, Y. Baba-Amer, N. van Rooijen, A. Plonquet, R.K. Gherardi, and B. Chazaud. 2007. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. The Journal of Experimental Medicine 204: 1057–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kehl, L.J., T.M. Trempe, and K.M. Hargreaves. 2000. A new animal model for assessing mechanisms and management of muscle hyperalgesia. Pain 85: 333–343.

    Article  CAS  PubMed  Google Scholar 

  48. Pinniger, G.J., T. Lavin, and A.J. Bakker. 2012. Skeletal muscle weakness caused by carrageenan-induced inflammation. Muscle & Nerve 46: 413–420.

    Article  Google Scholar 

  49. Radhakrishnan, R., S.A. Moore, and K.A. Sluka. 2003. Unilateral carrageenan injection into muscle or joint induces chronic bilateral hyperalgesia in rats. Pain 104: 567–577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ainsworth, L., K. Budelier, M. Clinesmith, A. Fiedler, R. Landstrom, B.J. Leeper, L.A. Moeller, S. Mutch, K. OʼDell, J. Ross, R. Radhakrishnan, and K.A. Sluka. 2006. Transcutaneous electrical nerve stimulation (TENS) reduces chronic hyperalgesia induced by muscle inflammation. Pain 120: 182–187.

    Article  PubMed  Google Scholar 

  51. Loram, L.C., A. Fuller, L.G. Fick, T. Cartmell, S. Poole, and D. Mitchell. 2007. Cytokine profiles during carrageenan-induced inflammatory hyperalgesia in rat muscle and hind paw. The Journal of Pain 8: 127–136.

    Article  CAS  PubMed  Google Scholar 

  52. Hardy, D., A. Besnard, M. Latil, G. Jouvion, D. Briand, C. Thépenier, Q. Pascal, A. Guguin, B. Gayraud-Morel, J.M. Cavaillon, S. Tajbakhsh, P. Rocheteau, and F. Chrétien. 2016. Comparative study of injury models for studying muscle regeneration in mice. PLoS One 11: e0147198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rodrigues-Simioni, L., J. Prado-Franceschi, A.C. Cintra, J.R. Giglio, M.S. Jiang, and J.E. Fletcher. 1995. No role for enzymatic activity or dantrolene-sensitive Ca2+ stores in the muscular effects of bothropstoxin, a Lys49 phospholipase A2 myotoxin. Toxicon 33: 1479–1489.

    Article  CAS  PubMed  Google Scholar 

  54. Gutiérrez, J.M., V. Arce, F. Brenes, and F. Chaves. 1990. Changes in myofibrillar components after skeletal muscle necrosis induced by a myotoxin isolated from the venom of the snake Bothrops asper. Experimental and Molecular Pathology 52: 25–36.

    Article  PubMed  Google Scholar 

  55. Gutiérrez, J.M., J. Núñez, C. Díaz, A.C. Cintra, M.I. Homsi-Brandeburgo, and J.R. Giglio. 1991. Skeletal muscle degeneration and regeneration after injection of bothropstoxin-II, a phospholipase A2 isolated from the venom of the snake Bothrops jararacussu. Experimental and Molecular Pathology 55: 217–229.

    Article  PubMed  Google Scholar 

  56. Teixeira, C.F., S.R. Zamunér, J.P. Zuliani, C.M. Fernandes, M.A. Cruz-Hofling, I. Fernandes, et al. 2003. Neutrophils do not contribute to local tissue damage, but play a key role in skeletal muscle regeneration, in mice injected with Bothrops asper snake venom. Muscle & Nerve 28: 449–459.

    Article  CAS  Google Scholar 

  57. Villalta, S.A., H.X. Nguyen, B. Deng, T. Gotoh, and J.G. Tidball. 2009. Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Human Molecular Genetics 18: 482–496.

    Article  CAS  PubMed  Google Scholar 

  58. Gordon, S. 2003. Alternative activation of macrophages. Nature Reviews. Immunology 3: 23–35.

    Article  CAS  PubMed  Google Scholar 

  59. Kauhanen, S., A. Salmi, K. von Boguslawski, S. Asko-Seljavaara, and I. Leivo. 2003. Satellite cell proliferation, reinnervation, and revascularization in human free microvascular muscle flaps. The Journal of Surgical Research 115: 191–199.

    Article  CAS  PubMed  Google Scholar 

  60. Couteaux, R., J.C. Mira, and A. d’Albis. 1988. Regeneration of muscles after cardiotoxin injury. I. Cytological aspects. Biology of the Cell 62: 171–182.

    Article  CAS  PubMed  Google Scholar 

  61. Wehling-Henricks, M., M.C. Jordan, T. Gotoh, W.W. Grody, K.P. Roos, and J.G. Tidball. 2010. Arginine metabolism by macrophages promotes cardiac and muscle fibrosis in mdx muscular dystrophy. PLoS One 5: e10763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Warren, G.L., T. Hulderman, N. Jensen, M. McKinstry, M. Mishra, M.I. Luster, et al. 2002. Physiological role of tumor necrosis factor alpha in traumatic muscle injury. The FASEB Journal 16: 1630–1632.

    Article  CAS  PubMed  Google Scholar 

  63. Kharraz, Y., J. Guerra, C.J. Mann, A.L. Serrano, and P. Muñoz-Cánoves. 2013. Macrophage plasticity and the role of inflammation in skeletal muscle repair. Mediators of Inflammation 2013: 491497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Serrano, A.L., B. Baeza-Raja, E. Perdiguero, M. Jardí, and P. Muñoz-Cánoves. 2008. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metabolism 7: 33–44.

    Article  CAS  PubMed  Google Scholar 

  65. Delaney, K., P. Kasprzycka, M.A. Ciemerych, and M. Zimowska. 2017. The role of TGF-β1 during skeletal muscle regeneration. Cell Biology International 41: 706–715.

    Article  CAS  PubMed  Google Scholar 

  66. Tidball, J.G. 2017. Regulation of muscle growth and regeneration by the immune system. Nature Reviews. Immunology 17: 165–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Järvinen, T.A., T.L. Järvinen, M. Kääriäinen, H. Kalimo, and M. Järvinen. 2005. Muscle injuries: biology and treatment. The American Journal of Sports Medicine 33: 745–764.

    Article  PubMed  Google Scholar 

  68. Tidball, J.G. 2005. Inflammatory processes in muscle injury and repair. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 288: R345–R353.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Priscila Andrade Ranéia e Silva received a fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). We thank Dr. Jorge M.C. Ferreira-Jr. for his help in flow cytometry.

Funding

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (311915/2012-4; 309392/2015-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliana L. Faquim-Mauro.

Ethics declarations

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranéia e Silva, P.A., da Costa Neves, A., da Rocha, C.B. et al. Differential Macrophage Subsets in Muscle Damage Induced by a K49-PLA2 from Bothrops jararacussu Venom Modulate the Time Course of the Regeneration Process. Inflammation 42, 1542–1554 (2019). https://doi.org/10.1007/s10753-019-01016-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-019-01016-y

Key Words

Navigation