Skip to main content

Advertisement

Log in

Neuronal EphA4 Regulates OGD/R-Induced Apoptosis by Promoting Alternative Activation of Microglia

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Accumulating evidence indicates that post-injury inflammation characterized by activated microglia contributes much to the neuropathology of ischemic injury. Several studies have demonstrated that microglia exhibit two entirely different functional activation states, referred to as classically activated (M1) and alternatively activated (M2) phenotype. Promoting microglial phenotype to switch from M1 dominant to M2 dominant might be a promising approach for handling ischemic injury. However, the comprehensive mechanism that underlines microglia polarization in ischemic brain remains unclear. Neuronal erythropoietin-producing human hepatocellular carcinoma cell receptor 4 (EphA4), the richest Eph receptor in the central nervous system (CNS), upregulate after ischemia and may have the potential to regulate microglia activation. We hypothesized that modulating EphA4/ephrin signaling could affect ischemic injury through controlling microglia polarization. We therefore knocked down neuronal EphA4 with short hairpin RNA (shRNA) and determined the role of EphA4/ephrin signaling in oxygen-glucose deprivation and reperfusion (OGD/R)-induced injury. We found that EphA4 shRNA treatment attenuated OGD/R-induced apoptosis and microglia proliferation. Neuronal EphA4 knockdown also promoted microglial M2 polarization, which reduced pro-inflammatory mediators and released anti-inflammatory cytokines as well as neurotrophic factors. We further revealed that EphA4 shRNA treatment functioned through RhoA/Rho-associated kinase 2 (ROCK2) signaling, a key mediator of microglia alternative activation. Together, these data suggested that blockage of EphA4/ephrin signaling between neuron and microglia decreased OGD/R-induced injury by promoting alternative activation of microglia via RhoA/ROCK2 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Borrajo, A., A.I. Rodriguez-Perez, B. Villar-Cheda, M.J. Guerra, and J.L. Labandeira-Garcia. 2014. Inhibition of the microglial response is essential for the neuroprotective effects of Rho-kinase inhibitors on MPTP-induced dopaminergic cell death. Neuropharmacology 85: 1–8. https://doi.org/10.1016/j.neuropharm.2014.05.021.

    Article  CAS  PubMed  Google Scholar 

  2. Carmona, M.A., K.K. Murai, L. Wang, A.J. Roberts, and E.B. Pasquale. 2009. Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proceedings of the National Academy of Sciences of the United States of America 106 (30): 12524–12529. https://doi.org/10.1073/pnas.0903328106.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cherry, J.D., J.A. Olschowka, and M.K. O’Banion. 2014. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. Journal of Neuroinflammation 11: 98. https://doi.org/10.1186/1742-2094-11-98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Corraliza, I.M., G. Soler, K. Eichmann, and M. Modolell. 1995. Arginase induction by suppressors of nitric oxide synthesis (IL-4, IL-10 and PGE2) in murine bone-marrow-derived macrophages. Biochemical and Biophysical Research Communications 206 (2): 667–673. https://doi.org/10.1006/bbrc.1995.1094.

    Article  CAS  PubMed  Google Scholar 

  5. Elbashir, S.M., J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, and T. Tuschl. 2001. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411 (6836): 494–498. https://doi.org/10.1038/35078107.

    Article  CAS  PubMed  Google Scholar 

  6. Fan, R., B. Enkhjargal, R. Camara, F. Yan, L. Gong, J. Tang ShengtaoYao, Y. Chen, and J.H. Zhang. 2017. Critical role of EphA4 in early brain injury after subarachnoid hemorrhage in rat. Experimental Neurology 296: 41–48. https://doi.org/10.1016/j.expneurol.2017.07.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fang, Q., A. Strand, W. Law, V.M. Faca, M.P. Fitzgibbon, N. Hamel, B. Houle, X. Liu, D.H. May, G. Poschmann, L. Roy, K. Stühler, W. Ying, J. Zhang, Z. Zheng, J.J.M. Bergeron, S. Hanash, F. He, B.R. Leavitt, H.E. Meyer, X. Qian, and M.W. McIntosh. 2009. Brain-specific proteins decline in the cerebrospinal fluid of humans with Huntington disease. Molecular & Cellular Proteomics 8 (3): 451–466. https://doi.org/10.1074/mcp.M800231-MCP200.

    Article  CAS  Google Scholar 

  8. Filosa, A., S. Paixao, S.D. Honsek, M.A. Carmona, L. Becker, B. Feddersen, L. Gaitanos, et al. 2009. Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nature Neuroscience 12 (10): 1285–1292. https://doi.org/10.1038/nn.2394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fu, A.K., K.W. Hung, H. Huang, S. Gu, Y. Shen, E.Y. Cheng, F.C. Ip, X. Huang, W.Y. Fu, and N.Y. Ip. 2014. Blockade of EphA4 signaling ameliorates hippocampal synaptic dysfunctions in mouse models of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America 111 (27): 9959–9964. https://doi.org/10.1073/pnas.1405803111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gingras, M., V. Gagnon, S. Minotti, H.D. Durham, and F. Berthod. 2007. Optimized protocols for isolation of primary motor neurons, astrocytes and microglia from embryonic mouse spinal cord. Journal of Neuroscience Methods 163 (1): 111–118. https://doi.org/10.1016/j.jneumeth.2007.02.024.

    Article  CAS  PubMed  Google Scholar 

  11. Hashimoto, R., Y. Nakamura, H. Kosako, M. Amano, K. Kaibuchi, M. Inagaki, and M. Takeda. 1999. Distribution of Rho-kinase in the bovine brain. Biochemical and Biophysical Research Communications 263 (2): 575–579. https://doi.org/10.1006/bbrc.1999.1409.

    Article  CAS  PubMed  Google Scholar 

  12. He, G.Q., W.M. Xu, J.F. Li, S.S. Li, B. Liu, X.D. Tan, and C.Q. Li. 2015. Huwe1 interacts with Gadd45b under oxygen-glucose deprivation and reperfusion injury in primary rat cortical neuronal cells. Molecular Brain 8: 88. https://doi.org/10.1186/s13041-015-0178-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu, X., R.K. Leak, Y. Shi, J. Suenaga, Y. Gao, P. Zheng, and J. Chen. 2015. Microglial and macrophage polarization-new prospects for brain repair. Nature Reviews. Neurology 11 (1): 56–64. https://doi.org/10.1038/nrneurol.2014.207.

    Article  PubMed  Google Scholar 

  14. Hu, X., P. Li, Y. Guo, H. Wang, R.K. Leak, S. Chen, Y. Gao, and J. Chen. 2012. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43 (11): 3063–3070. https://doi.org/10.1161/STROKEAHA.112.659656.

    Article  CAS  PubMed  Google Scholar 

  15. Kemmerling, N., P. Wunderlich, S. Theil, B. Linnartz-Gerlach, N. Hersch, B. Hoffmann, M.T. Heneka, B. de Strooper, H. Neumann, and J. Walter. 2017. Intramembranous processing by gamma-secretase regulates reverse signaling of ephrin-B2 in migration of microglia. Glia 65 (7): 1103–1118. https://doi.org/10.1002/glia.23147.

    Article  PubMed  Google Scholar 

  16. Klein, R. 2009. Bidirectional modulation of synaptic functions by Eph/ephrin signaling. Nature Neuroscience 12 (1): 15–20. https://doi.org/10.1038/nn.2231.

    Article  CAS  PubMed  Google Scholar 

  17. Lemmens, R., T. Jaspers, W. Robberecht, and V.N. Thijs. 2013. Modifying expression of EphA4 and its downstream targets improves functional recovery after stroke. Human Molecular Genetics 22 (11): 2214–2220. https://doi.org/10.1093/hmg/ddt073.

    Article  CAS  PubMed  Google Scholar 

  18. Li, J., N. Liu, Y. Wang, R. Wang, D. Guo, and C. Zhang. 2012. Inhibition of EphA4 signaling after ischemia-reperfusion reduces apoptosis of CA1 pyramidal neurons. Neuroscience Letters 518 (2): 92–95. https://doi.org/10.1016/j.neulet.2012.04.060.

    Article  CAS  PubMed  Google Scholar 

  19. Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25 (4): 402–408. https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  Google Scholar 

  20. Ma, Y., J. Wang, Y. Wang, and G.Y. Yang. 2017. The biphasic function of microglia in ischemic stroke. Progress in Neurobiology 157: 247–272. https://doi.org/10.1016/j.pneurobio.2016.01.005.

    Article  CAS  PubMed  Google Scholar 

  21. Morris, S.M., Jr. 2007. Arginine metabolism: boundaries of our knowledge. The Journal of Nutrition 137 (6 Suppl 2): 1602S–1609S. https://doi.org/10.1093/jn/137.6.1602S.

    Article  CAS  PubMed  Google Scholar 

  22. Munro, K.M., V.M. Perreau, and A.M. Turnley. 2012. Differential gene expression in the EphA4 knockout spinal cord and analysis of the inflammatory response following spinal cord injury. PLoS One 7 (5): e37635. https://doi.org/10.1371/journal.pone.0037635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Murai, K.K., L.N. Nguyen, F. Irie, Y. Yamaguchi, and E.B. Pasquale. 2003. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nature Neuroscience 6 (2): 153–160. https://doi.org/10.1038/nn994.

    Article  CAS  PubMed  Google Scholar 

  24. Nakagawa, O., K. Fujisawa, T. Ishizaki, Y. Saito, K. Nakao, and S. Narumiya. 1996. ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Letters 392 (2): 189–193.

    Article  CAS  PubMed  Google Scholar 

  25. Noren, N.K., and E.B. Pasquale. 2004. Eph receptor-ephrin bidirectional signals that target Ras and Rho proteins. Cellular Signalling 16 (6): 655–666. https://doi.org/10.1016/j.cellsig.2003.10.006.

    Article  CAS  PubMed  Google Scholar 

  26. Qin, H., R. Noberini, X. Huan, J. Shi, E.B. Pasquale, and J. Song. 2010. Structural characterization of the EphA4-Ephrin-B2 complex reveals new features enabling Eph-ephrin binding promiscuity. The Journal of Biological Chemistry 285 (1): 644–654. https://doi.org/10.1074/jbc.M109.064824.

    Article  CAS  PubMed  Google Scholar 

  27. Roser, A.E., L. Tonges, and P. Lingor. 2017. Modulation of microglial activity by Rho-kinase (ROCK) inhibition as therapeutic strategy in Parkinson’s disease and amyotrophic lateral sclerosis. Frontiers in Aging Neuroscience 9: 94. https://doi.org/10.3389/fnagi.2017.00094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Scheiblich, H., and G. Bicker. 2017. Regulation of microglial phagocytosis by RhoA/ROCK-inhibiting drugs. Cellular and Molecular Neurobiology 37 (3): 461–473. https://doi.org/10.1007/s10571-016-0379-7.

    Article  CAS  PubMed  Google Scholar 

  29. Schmucker, D., and S.L. Zipursky. 2001. Signaling downstream of Eph receptors and ephrin ligands. Cell 105 (6): 701–704.

    Article  CAS  PubMed  Google Scholar 

  30. Shamah, S.M., M.Z. Lin, J.L. Goldberg, S. Estrach, M. Sahin, L. Hu, M. Bazalakova, R.L. Neve, G. Corfas, A. Debant, and M.E. Greenberg. 2001. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell 105 (2): 233–244.

    Article  CAS  PubMed  Google Scholar 

  31. Shu, Y., B. Xiao, Q. Wu, T. Liu, Y. Du, H. Tang, S. Chen, L. Feng, L. Long, and Y. Li. 2016. The Ephrin-A5/EphA4 interaction modulates neurogenesis and angiogenesis by the p-Akt and p-ERK pathways in a mouse model of TLE. Molecular Neurobiology 53 (1): 561–576. https://doi.org/10.1007/s12035-014-9020-2.

    Article  CAS  PubMed  Google Scholar 

  32. Takahashi, I., Y. Hama, M. Matsushima, M. Hirotani, T. Kano, H. Hohzen, I. Yabe, J. Utsumi, and H. Sasaki. 2015. Identification of plasma microRNAs as a biomarker of sporadic amyotrophic lateral sclerosis. Molecular Brain 8 (1): 67. https://doi.org/10.1186/s13041-015-0161-7.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Takeuchi, S., H. Katoh, and M. Negishi. 2015. Eph/ephrin reverse signalling induces axonal retraction through RhoA/ROCK pathway. Journal of Biochemistry 158 (3): 245–252. https://doi.org/10.1093/jb/mvv042.

    Article  CAS  PubMed  Google Scholar 

  34. Tatsumi, E., H. Yamanaka, K. Kobayashi, H. Yagi, M. Sakagami, and K. Noguchi. 2015. RhoA/ROCK pathway mediates p38 MAPK activation and morphological changes downstream of P2Y12/13 receptors in spinal microglia in neuropathic pain. Glia 63 (2): 216–228. https://doi.org/10.1002/glia.22745.

    Article  PubMed  Google Scholar 

  35. Xiao, H., Q. Huang, J.Q. Wang, Q.Q. Deng, and W.P. Gu. 2016. Effect of ephrin-B2 on the expressions of angiopoietin-1 and -2 after focal cerebral ischemia/reperfusion. Neural Regeneration Research 11 (11): 1784–1789. https://doi.org/10.4103/1673-5374.194723.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yang, J., X. Luo, X. Huang, Q. Ning, M. Xie, and W. Wang. 2014. Ephrin-A3 reverse signaling regulates hippocampal neuronal damage and astrocytic glutamate transport after transient global ischemia. Journal of Neurochemistry 131 (3): 383–394. https://doi.org/10.1111/jnc.12819.

    Article  CAS  PubMed  Google Scholar 

  37. Yang, J.S., H.X. Wei, P.P. Chen, and G. Wu. 2018. Roles of Eph/ephrin bidirectional signaling in central nervous system injury and recovery. Experimental and Therapeutic Medicine 15 (3): 2219–2227. https://doi.org/10.3892/etm.2018.5702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, H., Y. Li, J. Yu, M. Guo, J. Meng, C. Liu, Y. Xie, L. Feng, B. Xiao, and C. Ma. 2013. Rho kinase inhibitor fasudil regulates microglia polarization and function. Neuroimmunomodulation 20 (6): 313–322. https://doi.org/10.1159/000351221.

    Article  CAS  PubMed  Google Scholar 

  39. Zujovic, V., and V. Taupin. 2003. Use of cocultured cell systems to elucidate chemokine-dependent neuronal/microglial interactions: control of microglial activation. Methods 29 (4): 345–350.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was partly financially supported by the Fujian Provincial Natural Science Foundation (Grant nos. 2017J05123 and 2018J01175); Startup Fund for Scientific Research, Fujian Medical University (Grant No. 2016QH067); Young and Middle-aged Backbone Key Research Project of the National Health and Family Planning Commission of Fujian Province (Grant nos. 2017-ZQN-46 and 2018-ZQN-48); and the National Natural Science Foundation of China (Grant no. 81802492).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Wu or Jin-Shan Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Figure S1

Co-staining of Iba1 (red) and GFP (green) in co-cultures. No double labeled cells were observed in (A3) which confirmed that microglia in co-cultures were not infected by EphA4 shRNA lentivirus. Scale bar = 100 μm. (PNG 2361 kb)

High resolution image (TIF 71037 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, HX., Yao, PS., Chen, PP. et al. Neuronal EphA4 Regulates OGD/R-Induced Apoptosis by Promoting Alternative Activation of Microglia. Inflammation 42, 572–585 (2019). https://doi.org/10.1007/s10753-018-0914-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0914-4

KEY WORDS

Navigation