Skip to main content
Log in

RX-207, a Small Molecule Inhibitor of Protein Interaction with Glycosaminoglycans (SMIGs), Reduces Experimentally Induced Inflammation and Increases Survival Rate in Cecal Ligation and Puncture (CLP)-Induced Sepsis

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The fused quinazolinone derivative, RX-207, is chemically and functionally related to small molecule inhibitors of protein binding to glycosaminoglycans (SMIGs). Composed of a planar aromatic amine scaffold, it inhibits protein binding to glycosaminoglycans (GAGs). RX-207 reduced neutrophil migration in thioglycollate-induced peritonitis (37%), inhibited carrageenan-induced paw edema (32%) and cerulein-induced pancreatitis (28%), and increased animal survival in the mouse model of cecal ligation and puncture (CLP)-induced sepsis (60%). The mechanism of RX-207 action, analyzed by UV spectroscopy, confirmed that which was elucidated for chemically related anti-inflammatory SMIGs. RX-207 binding to cell surface GAGs can account for the inhibition of neutrophil recruitment via the micro-vasculature and as a consequence, the reduction of neutrophil mediated tissue damage in the animal models of inflammation and improved survival of mice in CLP-induced sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pavlik, D.J., R.W. Simpson, E.T. Horn, L. King, and L. Finoli. 2015. Pharmacotherapy of sepsis. Critical Care Nursing Quarterly 38: 121–136.

    Article  PubMed  Google Scholar 

  2. Marshall, J.C. 2014. Why have clinical trials in sepsis failed? Trends in Molecular Medicine 20: 195–203.

    Article  PubMed  Google Scholar 

  3. Fink, M.P., and H.S. Warren. 2014. Strategies to improve drug development for sepsis. Nature Reviews Drug Discovery 13: 741–758.

    Article  CAS  PubMed  Google Scholar 

  4. Vincent, J.L., E.O. Martinez, and E. Silva. 2011. Evolving concepts in sepsis definitions. Critical Care Nursing Clinics of North America 23: 29–39.

    Article  PubMed  Google Scholar 

  5. Munford, R.S. 2006. Severe sepsis and septic shock: the role of gram-negative bacteremia. Annual Reviews of Pathology 1: 467–496.

    Article  CAS  Google Scholar 

  6. Koh, I.H., J.L. Menchaca-Diaz, T.H. Koh, R.L. Souza, C.M. Shu, V.E. Rogerio, and A.M. Liberatore. 2010. Microcirculatory evaluation in sepsis: a difficult task. Shock 34 (Suppl1): 27–33.

    Article  PubMed  Google Scholar 

  7. Wagner, J.G., and R.A. Roth. 2000. Neutrophil migration mechanisms, with an emphasis on the pulmonary vasculature. Pharmacological Reviews 52: 349–374.

    CAS  PubMed  Google Scholar 

  8. Woodfin, A., M.B. Voisin, M. Beyrau, B. Colom, D. Caille, F.M. Diapouli, G.B. Nash, T. Chavakis, S.M. Albelda, G.E. Rainger, P. Meda, B.A. Imhof, and S. Nourshargh. 2011. The junctional adhesion molecule JAM-C regulates polarized trans-endothelial migration of neutrophils in vivo. Nature Immunology 12: 761–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harris, N., F. Yurgenzon Kogan, G. Il'kova, S. Juhas, O. Lahmy, Y.I. Gregor, J. Koppel, R. Zhuk, and P. Gregor. 2014. Small molecule inhibitors of protein interaction with glycosaminoglycans (SMIGs), a novel class of bioactive agents with anti-inflammatory properties. Biochimica et Biophysica Acta 1840: 245–254.

    Article  CAS  PubMed  Google Scholar 

  10. Harris, N., J. Koppel, F. Zsila, S. Juhas, G. Il’kova, F. Yurgenzon Kogan, O. Lahmy, G. Wildbaum, N. Karin, R. Zhuk, and P. Gregor. 2016. Mechanism of action and efficacy of RX-111, a thieno[2,3-c]pyridine derivative and small molecule inhibitor of protein interaction with glycosaminoglycans (SMIGs), in delayed-type hypersensitivity, TNBS-induced colitis and experimental autoimmune encephalomyelitis. Inflammation Research 65: 285–294.

    Article  CAS  PubMed  Google Scholar 

  11. Xie, X., A.S. Rivier, A. Zakrzewicz, M. Bernimoulin, X.-L. Zeng, H.P. Wesseli, M. Schapira, and O. Spertini. 2000. Inhibition of selectin-mediated cell adhesion and prevention of acute inflammation by nonanticoagulant sulfated saccharides. The Journal of Biological Chemistry 275: 34818–34825.

    Article  CAS  PubMed  Google Scholar 

  12. Torres, S.R., T.S. Fröde, G.M. Nardi, N. Vita, R. Reeb, P. Ferrara, R.M. Ribeiro-do-Valle, and R.C. Farges. 2000. Anti-inflammatory effects of peripheral benzodiazepine receptor ligands in two mouse models of inflammation. European Journal of Pharmacology 408: 199–211.

    Article  CAS  PubMed  Google Scholar 

  13. Cuzzocrea, S., E. Mazzon, L. Dugo, I. Serraino, T. Centorrino, A. Ciccolo, F.A. Van de Loo, D. Britti, A.P. Caputi, and C. Thiemermann. 2002. Inducible nitric oxide synthase-deficient mice exhibit resistance to the acute pancreatitis induced by cerulein. Shock 17: 416–422.

    Article  PubMed  Google Scholar 

  14. Steinberg, W.M., S.S. Goldstein, N.D. Davis, J. Shamma'a, and K. Anderson. 1985. Diagnostic Assays in Acute Pancreatitis: A Study of Sensitivity and Specificity. Annals of Internal Medicine 102: 576–580.

    Article  CAS  PubMed  Google Scholar 

  15. Fink, M.P., and S.O. Heard. 1990. Laboratory Models of Sepsis and Septic Shock. Journal of Surgical Research 49: 186–196.

    Article  CAS  PubMed  Google Scholar 

  16. Henderson, R.B., J.A.R. Hobbs, M. Mathies, and N. Hogg. 2003. Rapid recruitment of inflammatory monocytes is independent of neutrophil migration. Blood 102: 328–335.

    Article  CAS  PubMed  Google Scholar 

  17. Kipari, T., S. Watson, K. Houlberg, S. Lepage, J. Hughes, and J.F. Cailhier. 2009. Lymphocytes modulate peritoneal leukocyte recruitment in peritonitis. Inflammation Research 58: 553–560.

    Article  CAS  PubMed  Google Scholar 

  18. Vinegar, R., J.F. Truax, J.L. Selph, P.R. Johnston, A.L. Venable, and K.K. McKenzie. 1987. Pathway to carrageenan-induced inflammation in the hind limb of the rat. Federation Proceedings 46: 118–126.

    CAS  PubMed  Google Scholar 

  19. Niederau, C., L.D. Ferrell, and J.H. Grendell. 1985. Cerulein induced acute necrotizing pancreatitis in mice: protective effects of proglumide, benzotript, and secretin. Gastroenterology 88: 1192–1204.

    Article  CAS  PubMed  Google Scholar 

  20. Fournier, B.M., and C.A. Parkos. 2012. The role of neutrophils during intestinal inflammation. Mucosal Immunology 5: 354–366.

    Article  CAS  PubMed  Google Scholar 

  21. Kolaczkowska, E., and P. Kubes. 2013. Neutrophil recruitment and function in health and inflammation. Nature Reviews Immunology 13: 159–175.

    Article  CAS  PubMed  Google Scholar 

  22. Nauseef, W.M., and N. Borregaard. 2014. Neutrophils at work. Nature Immunology 15: 602–611.

    Article  CAS  PubMed  Google Scholar 

  23. Mantovani, A., M.A. Cassatella, C. Costantini, and S. Jaillon. 2011. Neutrophils in the activation and regulation of innate and adaptive immunity. Nature Reviews Immunology 11: 519–531.

    Article  CAS  PubMed  Google Scholar 

  24. Siempos, I.I., H.C. La, Y. Ding, M.E. Choi, A.M.K. Choi, and S.W. Ryter. 2014. Cecal Ligation and Puncture-induced Sepsis as a Model to Study Autophagy in Mice. Journal of Visualized Experiments 84 (e51066): 1–7.

    Google Scholar 

  25. Zsila, F. 2015. Glycosaminoglycans are potential pharmacological targets for classic DNA minor groove binder drugs berenil and pentamidine. Physical Chemistry Chemical Physics 17: 24560–24565.

    Article  CAS  PubMed  Google Scholar 

  26. Howard, M., T. Muchamuel, S. Andrade, and S. Menon. 1993. Interleukin 10 protects mice from lethal endotoxemia. Journal of Experimental Medicine 177 (4): 1205–1208.

    Article  CAS  PubMed  Google Scholar 

  27. Nicoletti, F., G. Mancuso, V. Cusumano, R. Di Marco, P. Zaccone, K. Bendtzen, and G. Teti. 1997. Prevention of endotoxin-induced lethality in neonatal mice by interleukin-13. European Journal of Immunology 27 (6): 1580–1583.

    Article  CAS  PubMed  Google Scholar 

  28. Martin, L., P. Koczera, E. Zechendorf, and T. Schuerholz. 2016. The Endothelial Glycocalyx: New Diagnostic and Therapeutic Approaches in Sepsis. BioMed Research International 2016: 1–8.

    Article  Google Scholar 

  29. Huang, M.L., C.J. Fisher, and K. Godula. 2016. Glycomaterials for probing host–pathogen interactions and the immune response. Experimental Biology and Medicine 241: 1042–1053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Martin, L., C. Peters, S. Schmitz, J. Moellmann, A. Martincuks, N. Heussen, M. Lehrke, G. Müller-Newen, G. Marx, and T. Schuerholz. 2015. Soluble heparan sulfate in serum of septic shock patients induces mitochondrial dysfunction in murine cardiomyocytes. Shock 44: 569–577.

    Article  CAS  PubMed  Google Scholar 

  31. Bentzer, P., J. Fisher, H.J. Kong, M. Mörgelin, J.H. Boyd, K.R. Walley, J.A. Russell, and A. Linder. 2016. Heparin-binding protein is important for vascular leak in sepsis. Intensive Care Medicine Experimental 4: 1–16.

    Article  Google Scholar 

  32. Gautam, N., A.M. Olofsson, H. Herwald, L.F. Iversen, E. Lundgren-Akerlund, P. Hedqvist, K.E. Arfors, H. Flodgaard, and L. Lindbom. 2001. Heparin-binding protein (HBP/CAP37): a missing link in neutrophil-evoked alteration of vascular Permeability. Nature Medicine 7: 1123–1127.

    Article  CAS  PubMed  Google Scholar 

  33. Gotts, J.E., and M.A. Matthay. 2016. Sepsis: pathophysiology and clinical management. British Medical Journal 353: 1585–1605.

    Article  Google Scholar 

  34. Chatterjee, N., S. Da, D. Bose, S. Banerjee, S. Das, D. Chattopadhyay, and K.D. Saha. 2012. Exploring the anti-inflammatory activity of a novel 2-phenylquinazoline analog with protection against inflammatory injury. Toxicology and Applied Pharmacology 264: 182–191.

    Article  CAS  PubMed  Google Scholar 

  35. Pacheco de Oliveira, M.T., T.R. de Oliveira Ramalho, L.K. Paiva Ferreira, A.L. Araújo Lima, M. Barbosa Cordeiro, H. Ferreira Costa, L.C. Rodrigues, and M.R. Piuvezam. 2015. Synthesis, toxicity study and anti-inflammatory effect of MHTP, a new tetrahydroisoquinoline alkaloid. Immunopharmacology and Immunotoxicology 37: 400–412.

    Article  PubMed  Google Scholar 

  36. Vellinga, N.A.R., G. Veenstra, C. Scorcella, M. Koopmans, E.N. van Roon, C. Ince, and E.C. Boerma. 2015. Effects of ketanserin on microcirculatory alterations in septic shock: An open-label pilot study. Journal of Critical Care 30: 1156–1162.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Project No. ITMS 26220120066 of the Research and Development Operational Program funded by the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicholas Harris or Paul Gregor.

Ethics declarations

The animal experiments were reviewed and approved by the Ethical Committee for animal experimentation of the Institute of Animal Physiology, approved by the State Veterinary and Food Administration of the Slovak Republic and were performed in accordance with Slovak legislation based on EC Directive 86/609/EEC on the protection of animals used for experimental and other scientific purposes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juhas, S., Harris, N., Il’kova, G. et al. RX-207, a Small Molecule Inhibitor of Protein Interaction with Glycosaminoglycans (SMIGs), Reduces Experimentally Induced Inflammation and Increases Survival Rate in Cecal Ligation and Puncture (CLP)-Induced Sepsis. Inflammation 41, 307–314 (2018). https://doi.org/10.1007/s10753-017-0688-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0688-0

KEY WORDS

Navigation