Skip to main content

Advertisement

Log in

Lapatinib Ameliorates Experimental Arthritis in Rats

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Epidermal growth factor receptor (EGFR) and its ligands are commonly expressed by synovial cells. The aim of the present study was to detect the potential effect of lapatinib an inhibitor of EGFR tyrosine kinases on collagen-induced arthritis. Thirty Wistar albino female rats were randomized into three groups. Arthritis was induced by intradermal injection of chicken type II collagen with incomplete Freund’s adjuvant. Serum TNF-α, IL-17, and malondialdehyde (MDA) levels were analyzed. Tissue superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) activities, and nuclear factor erythroid 2-related factor-2 (Nrf2) and heme oxgenase-1 (HO-1) expressions were determined. TNF-α, IL-17 and MDA levels, and Nrf2 and HO-1 expressions were lower in lapatinib-treated (30 mg/kg/day) group compared to sham group, while SOD, catalase, and GPx activities were higher (p < 0.05). Moreover, lapatinib ameliorated perisynovial inflammation and cartilage–bone destruction (p < 0.001). In conclusion, EGFR may have prominent pathogenic role and lapatinib may be an effective therapeutic option for arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hirohata, S., and J. Sakakibara. 1999. Angioneogenesis as a possible elusive triggering factor in rheumatoid arthritis. Lancet 353: 1331.

    Article  CAS  PubMed  Google Scholar 

  2. Pap, T., and O. Distler. 2005. Linking angiogenesis to bone destruction in arthritis. Arthritis and Rheumatism 52: 1346–1348.

    Article  CAS  PubMed  Google Scholar 

  3. Clavel, G., N. Bessis, and M.C. Boissier. 2003. Recent data on the role for angiogenesis in rheumatoid arthritis. Joint, Bone, Spine 70: 321–326.

    Article  PubMed  Google Scholar 

  4. Nagashima, M., H. Tanaka, H. Takahashi, A. Tachihara, K. Tanaka, T. Ishiwata, et al. 2002. Study of the mechanism involved in angiogenesis and synovial cell proliferation in human synovial tissues of patients with rheumatoid arthritis using SCID mice. Laboratory Investigation 82: 981–988.

    Article  PubMed  Google Scholar 

  5. Sone, H., Y. Kawakami, M. Sakauchi, Y. Nakamura, A. Takahashi, H. Shimano, et al. 2001. Neutralization of vascular endothelial growth factor prevents collagen-induced arthritis and ameliorates established disease in mice. Biochemical and Biophysical Research Communications 281: 562–568.

    Article  CAS  PubMed  Google Scholar 

  6. Kusada, J., T. Otsuka, N. Matsui, T. Hirano, K. Asai, and T. Kato. 1993. Immuno-reactive human epidermal growth factor (h-EGF) in rheumatoid synovial fluids. Nippon Seikeigeka Gakkai Zasshi 67: 859–865.

    CAS  PubMed  Google Scholar 

  7. Satoh, K., S. Kikuchi, M. Sekimata, Y. Kabuyama, M.K. Homma, and Y. Homma. 2001. Involvement of ErbB-2 in rheumatoid synovial cell growth. Arthritis and Rheumatism 44: 260–265.

    Article  CAS  PubMed  Google Scholar 

  8. Perrotte, P., T. Matsumoto, K. Inoue, H. Kuniyasu, B.Y. Eve, D.J. Hicklin, et al. 1999. Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clinical Cancer Research 5: 257–265.

    CAS  PubMed  Google Scholar 

  9. Goldman, C.K., J. Kim, W.L. Wong, V. King, T. Brock, and Gillespie. 1993. Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells: a model of glioblastoma multiforme pathophysiology. Molecular Biology of the Cell 4: 121–133.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Zhang, Z., T. Song, Y. Jin, J. Pan, L. Zhang, L. Wang, and P. Li. 2009. Epidermal growth factor receptor regulates MT1-MMP and MMP-2 synthesis in SiHa cells via both PI3-K/AKT and MAPK/ERK pathways. International Journal of Gynecological Cancer 19: 998–1003.

    Article  PubMed  Google Scholar 

  11. Kim, H.P., Y.K. Yoon, J.W. Kim, S.W. Han, H.S. Hur, J. Park, et al. 2009. Lapatinib, a dual EGFR and HER2 tyrosine kinase inhibitor, downregulates thymidylate synthase by inhibiting the nuclear translocation of EGFR and HER2. PloS One 16: 5933.

    Article  Google Scholar 

  12. Rusnak, D.W., K. Lackey, K. Affleck, E.R. Wood, K.J. Alligood, N. Rhodes, et al. 2001. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Molecular Cancer Therapeutics 1: 85–94.

    CAS  PubMed  Google Scholar 

  13. Hirata, A., S. Ogawa, T. Kometani, T. Kuwano, S. Naito, M. Kuwano, et al. 2002. ZD1839 (Iressa) induces antiangiogenic effects through inhibition of epidermal growth factor receptor tyrosine kinase. Cancer Research 62: 2554–2260.

    CAS  PubMed  Google Scholar 

  14. Trentham, D.E., A.S. Townes, and A.H. Kang. 1977. Autoimmunity to type II collagen an experimental model of arthritis. The Journal of Experimental Medicine 146: 857–868.

    Article  CAS  PubMed  Google Scholar 

  15. Hoffmann, M.S., S. Hayer, and G. Steiner. 2009. Immmunopathogenesis of rheumatoid arthritis; induction of arthritogenic autoimmune responses by proinflammatory stimuli. Annals of the New York Academy of Sciences 1173: 391–400.

    Article  CAS  PubMed  Google Scholar 

  16. Larsson, P., S. Kleinau, R. Holmdahl, and L. Klareskog. 1990. Homologous type II collagen-induced arthritis in rats. Characterization of the disease and demonstration of clinically distinct forms of arthritis in two strains of rats after immunization with the same collagen preparation. Arthritis and Rheumatism 33: 693–701.

    Article  CAS  PubMed  Google Scholar 

  17. Choi, J., B.J. Yoon, Y.N. Han, K.T. Lee, J. Ha, H.J. Jung, and H.J. Park. 2003. Antirheumatoid arthritis effect of rhus verniciflua and of the active component, sulfuretin. Planta Medica 69: 899–904.

    Article  CAS  PubMed  Google Scholar 

  18. Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall. 1951. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193: 165–175.

    Google Scholar 

  19. Yamane, S., S. Ishida, Y. Hanamoto, K. Kumagai, R. Masuda, K. Tanaka, et al. 2008. Proinflammatory role of amphiregulin, an epidermal growth factor family member whose expression is augmented in rheumatoid arthritis patients. Journal of Inflammation 5: 5.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Swanson, C.D., E.H. Akama-Garren, E.A. Stein, J.D. Petralia, P.J. Ruiz, A. Edalati, T.M. Lindstrom, and W.H. Robinson. 2012. Inhibition of epidermal growth factor receptor tyrosine kinase ameliorates collagen-induced arthritis. Journal of Immunology 188: 3513–3521.

    Article  CAS  Google Scholar 

  21. Li, X., F.L. Yuan, W.G. Lu, Y.Q. Zhao, C.W. Li, J.P. Li, and R.S. Xu. 2010. The role of interleukin-17 in mediating joint destruction in rheumatoid arthritis. Biochemical and Biophysical Research Communications 397: 131–135.

    Article  CAS  PubMed  Google Scholar 

  22. Van Bezooijen, R.L., L. Van Der Wee-Pals, S.E. Papapoulos, and C.W. Löwik. 2002. Interleukin 17 synergises with tumour necrosis factor alpha to induce cartilage destruction in vitro. Annals of the Rheumatic Diseases 61: 870–876.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Koenders, M.I., J.K. Kolls, B. Oppers-Walgreen, L. van den Bersselaar, L.A. Joosten, J.R. Schurr, et al. 2005. Interleukin-17 receptor deficiency results in impaired synovial expression of interleukin-1 and matrix metalloproteinases 3, 9, and 13 and prevents cartilage destruction during chronic reactivated streptococcal cell wall-induced arthritis. Arthritis and Rheumatism 52: 3239–3247.

    Article  CAS  PubMed  Google Scholar 

  24. Kamiya, S., C. Nakamura, T. Fukawa, K. Ono, T. Ohwaki, T. Yoshimoto, et al. 2007. Effects of IL-23 and IL-27 on osteoblasts and osteoclasts: inhibitory effects on osteoclast differentiation. Journal of Bone and Mineral Metabolism 25: 277–285.

    Article  CAS  PubMed  Google Scholar 

  25. LeGrand, A., B. Fermor, C. Fink, D.S. Pisetsky, J.B. Weinberg, T.P. Vail, et al. 2001. Interleukin-1, tumor necrosis factor alpha, and interleukin-17 synergistically up-regulate nitric oxide and prostaglandin E2 production in explants of human osteoarthritic knee menisci. Arthritis and Rheumatism 44: 2078–2083.

    Article  CAS  PubMed  Google Scholar 

  26. Chabaud, M.G., G. Page, and P. Miossec. 2001. Enhancing effect of IL-1, IL-17, and TNF-alpha on macrophage inflammatory protein-3alpha production in rheumatoid arthritis: regulation by soluble receptors and Th2 cytokines. Journal of Immunology 167: 6015–6020.

    Article  CAS  Google Scholar 

  27. Lubberts, E., L. van den Bersselaar, B. Oppers-Walgreen, P. Schwarzenberger, C.J. Coenen-de Roo, J.K. Kolls, et al. 2003. IL-17 promotes bone erosion in murine collagen-induced arthritis through loss of the receptor activator of NF-kappa B ligand/osteoprotegerin balance. Journal of Immunology 170: 2655–2662.

    Article  CAS  Google Scholar 

  28. Afonso, V., R. Champy, D. Mitrovic, P. Collin, and A. Lomri. 2007. Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint, Bone, Spine 74: 324–329.

    Article  CAS  PubMed  Google Scholar 

  29. Sandhu, J.K., S. Robertson, H.C. Birnboim, and R. Goldstein. 2003. Distribution of protein nitrotyrosine in synovial tissues of patients with rheumatoid arthritis and osteoarthritis. Journal of Rheumatology 30: 1173–1181.

    CAS  PubMed  Google Scholar 

  30. Mathy-Hartert, M., G. Martin, P. Devel, G. Deby-Dupont, J.P. Pujol, J.Y. Reginster, et al. 2003. Reactive oxygen species downregulate the expression of pro-inflammatory genes by human chondrocytes. Inflammation Research 52: 111–118.

    Article  CAS  PubMed  Google Scholar 

  31. Goebel, K.M., U. Storck, and F. Neurath. 1981. Intrasynovial orgotein therapy in rheumatoid arthritis. Lancet 1: 1015–1017.

    Article  CAS  PubMed  Google Scholar 

  32. Salvemini, D., and S. Cuzzocrea. 2003. Therapeutic potential of superoxide dismutase mimetics as therapeutic agents in critical care medicine. Critical Care Medicine 31: 29–38.

    Article  Google Scholar 

  33. Hayes, J.D., and A.T. Dinkova-Kostova. 2014. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends in Biochemical Sciences 39(4): 199–218.

    Article  CAS  PubMed  Google Scholar 

  34. Wruck, C.J., A. Fragoulis, A. Gurzynski, L.O. Brandenburg, Y.W. Kan, and K.K. Chan. 2011. Role of oxidative stress in rheumatoid arthritis: insights from the Nrf2-knockout mice. Annals of the Rheumatic Diseases 70: 844–850.

    Article  CAS  PubMed  Google Scholar 

  35. Maicas, N., M.L. Ferrándiz, R. Brines, L. Ibáñez, A. Cuadrado, M.I. Koenders, W.B. van den Berg, and M.J. Alcaraz. 2011. Deficiency of Nrf2 accelerates the effector phase of arthritis and aggravates joint disease. Antioxidants and Redox Signaling 15(4): 889–901.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

None.

Ethics Approval

Approval was obtained from the Ethics Committee of Firat University.

Provenance and Peer Review

Not commissioned; externally peer reviewed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suleyman Serdar Koca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozgen, M., Koca, S.S., Karatas, A. et al. Lapatinib Ameliorates Experimental Arthritis in Rats. Inflammation 38, 252–259 (2015). https://doi.org/10.1007/s10753-014-0028-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-0028-6

KEY WORDS

Navigation