Skip to main content

Advertisement

Log in

Proteasome Inhibition Prevents Development of Experimental Dermal Fibrosis

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Scleroderma is a chronic fibrotic disorder. Bortezomib, a proteasome inhibitor, is reported to attenuate experimentally induced renal and cardiac fibrosis. This study aimed to evaluate the preventive and therapeutic efficacies of bortezomib on a bleomycin (BLM)-induced scleroderma model. Dermal fibrosis was induced in Balb/c mice by subcutaneous BLM (100 μg/day) injections. Bortezomib (1.6 mg/kg twice/week) was applied intraperitoneally to BLM-injected mice during the first 3 weeks for preventive interventions and in the second 3 weeks for therapeutic interventions. IL-4 and TGF-β1 serum levels, dermal thicknesses, dermal inflammatory cell counts, and α-SMA-positive fibroblastic cell counts were determined, and type-I collagen, NF-κBp65, I-κBα, and JNK1 expressions were assessed. BLM applications increased serum IL-4 level, dermal inflammatory cell counts, α-SMA-positive cell counts, expression of type-I collagen, NF-κB, and JNK1, and dermal thickness in early stage of fibrosis, but serum IL-4 level and dermal inflammatory cell counts showed no increases in later stages. As a preventive intervention, bortezomib decreased dermal thickness, inflammatory cell infiltrations, fibroblastic activity, and expression of type-I collagen, NF-κB, and JNK1, but did not decrease fibroblastic activity and dermal thickness at later stages of fibrosis. Inflammatory status is prominent in the early stage of dermal fibrosis, but declines at later stages. In BLM-induced dermal fibrosis, bortezomib has a preventive anti-fibrotic and anti-inflammatory efficacy, but has no therapeutic anti-fibrotic efficacy in preexisting tissue fibrosis. These findings suggest that the effect of proteasome inhibition in early stages of dermal fibrosis may be related to its anti-inflammatory effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Krieg, T., and M. Meurer. 1988. Systemic scleroderma. Clinical and pathophysiologic aspects. Journal of the American Academy of Dermatology 18: 457–481.

    Article  PubMed  CAS  Google Scholar 

  2. LeRoy, E.C., C. Black, R. Fleischmajer, S. Jablonska, T. Krieg, T.A. Medsger Jr., et al. 1988. Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. Journal of Rheumatology 15: 202–205.

    PubMed  CAS  Google Scholar 

  3. Denton, C.P., and C.M. Black. 2004. Scleroderma—clinical and pathological advances. Best Practice & Research. Clinical Rheumatology 18: 271–290.

    CAS  Google Scholar 

  4. Sakkas, L.I. 2005. New developments in the pathogenesis of systemic sclerosis. Autoimmunity 38: 113–116.

    Article  PubMed  CAS  Google Scholar 

  5. Needleman, B.W., F.M. Wigley, and R.W. Stair. 1992. Interleukin-1, interleukin-2, interleukin-4, interleukin-6, tumor necrosis factor alpha, and interferon-gamma levels in sera from patients with scleroderma. Arthritis and Rheumatism 35: 67–72.

    Article  PubMed  CAS  Google Scholar 

  6. Rajkumar, S.V., P.G. Richardson, T. Hideshima, and K.C. Anderson. 2005. Proteasome inhibition as a novel therapeutic target in human cancer. Journal of Clinical Oncology 23: 630–639.

    Article  PubMed  CAS  Google Scholar 

  7. Milano, A., R.V. Iaffaioli, and F. Caponigro. 2007. The proteasome: a worthwhile target for the treatment of solid tumours? European Journal of Cancer 43: 1125–1133.

    Article  PubMed  CAS  Google Scholar 

  8. Anan, A., E.S. Baskin-Bey, S.F. Bronk, N.W. Werneburg, V.H. Shah, and G.J. Gores. 2006. Proteasome inhibition induces hepatic stellate cell apoptosis. Hepatology 43: 335–344.

    Article  PubMed  CAS  Google Scholar 

  9. Meiners, S., B. Hocher, A. Weller, M. Laule, V. Stangl, C. Guenther, et al. 2004. Downregulation of matrix metalloproteinases and collagens and suppression of cardiac fibrosis by inhibition of the proteasome. Hypertension 44: 471–477.

    Article  PubMed  CAS  Google Scholar 

  10. Tashiro, K., S. Tamada, N. Kuwabara, T. Komiya, K. Takekida, T. Asai, et al. 2003. Attenuation of renal fibrosis by proteasome inhibition in rat obstructive nephropathy: possible role of nuclear factor kappaB. International Journal of Molecular Medicine 12: 587–592.

    PubMed  CAS  Google Scholar 

  11. Yamamoto, T., S. Takagawa, I. Katayama, K. Yamazaki, Y. Hamazaki, H. Shinkai, and K. Nishioka. 1999. Animal model of sclerotic skin. I: Local injections of bleomycin induce sclerotic skin mimicking scleroderma. The Journal of Investigative Dermatology 112: 456–462.

    Article  PubMed  CAS  Google Scholar 

  12. Yamamoto, T. 2002. Animal model of sclerotic skin induced by bleomycin: a clue to the pathogenesis of and therapy for scleroderma? Clinical Immunology 102: 209–216.

    Article  PubMed  CAS  Google Scholar 

  13. Srimatkandada, P., R. Loomis, R. Carbone, S. Srimatkandada, and J. Lacy. 2008. Combined proteasome and Bcl-2 inhibition stimulates apoptosis and inhibits growth in EBV-transformed lymphocytes: a potential therapeutic approach to EBV-associated lymphoproliferative diseases. European Journal of Haematology 80: 407–418.

    Article  PubMed  CAS  Google Scholar 

  14. Varga, J. 2008. Systemic sclerosis: an update. Bulletin of the NYU Hospital for Joint Diseases 66: 198–202.

    PubMed  Google Scholar 

  15. Akhmetshina, A., P. Venalis, C. Dees, N. Busch, J. Zwerina, G. Schett, et al. 2009. Treatment with imatinib prevents fibrosis in different preclinical models of systemic sclerosis and induces regression of established fibrosis. Arthritis and Rheumatism 60: 219–224.

    Article  PubMed  CAS  Google Scholar 

  16. Tamby, M.C., Y. Chanseaud, L. Guillevin, and L. Mouthon. 2003. New insights into the pathogenesis of systemic sclerosis. Autoimmunity Reviews 2: 152–157.

    Article  PubMed  CAS  Google Scholar 

  17. Kalogerou, A., E. Gelou, S. Mountantonakis, L. Settas, E. Zafiriou, and L. Sakkas. 2005. Early T cell activation in the skin from patients with systemic sclerosis. Annals of the Rheumatic Diseases 64: 1233–1235.

    Article  PubMed  CAS  Google Scholar 

  18. Wang, T., X. Zhang, and J.J. Li. 2002. The role of NF-kappaB in the regulation of cell stress responses. International Immunopharmacology 2: 1509–1520.

    Article  PubMed  CAS  Google Scholar 

  19. Yamamoto, Y., and R.B. Gaynor. 2004. IkappaB kinases: key regulators of the NF-kappaB pathway. Trends in Biochemical Sciences 29: 72–79.

    Article  PubMed  CAS  Google Scholar 

  20. Sakkas, L.I., I.C. Chikanza, and C.D. Platsoucas. 2006. Mechanisms of disease: the role of immune cells in the pathogenesis of systemic sclerosis. Nature Clinical Practice Rheumatology 2: 679–685.

    Article  PubMed  CAS  Google Scholar 

  21. Santiago, B., M. Galindo, M. Rivero, and J.L. Pablos. 2001. Decreased susceptibility to Fas-induced apoptosis of systemic sclerosis dermal fibroblasts. Arthritis and Rheumatism 44: 1667–1676.

    Article  PubMed  CAS  Google Scholar 

  22. Cipriani, P., A. Fulminis, E. Pingiotti, A. Marrelli, V. Liakouli, R. Perricone, et al. 2006. Resistance to apoptosis in circulating alpha/beta and gamma/delta T lymphocytes from patients with systemic sclerosis. Journal of Rheumatology 33: 2003–2014.

    PubMed  CAS  Google Scholar 

  23. Fineschi, S., W. Reith, P.A. Guerne, J.M. Dayer, and C. Chizzolini. 2006. Proteasome blockade exerts an antifibrotic activity by coordinately down-regulating type I collagen and tissue inhibitor of metalloproteinase-1 and up-regulating metalloproteinase-1 production in human dermal fibroblasts. The FASEB Journal 20: 562–564.

    CAS  Google Scholar 

  24. Corriveau, M.P., I. Boufaied, J. Lessard, S. Chabaud, J.L. Senécal, T. Grodzicky, S. Chartier, Y. Raymond, and V.J. Moulin. 2009. The fibrotic phenotype of systemic sclerosis fibroblasts varies with disease duration and severity of skin involvement: reconstitution of skin fibrosis development using a tissue engineering approach. The Journal of Pathology 217: 534–542.

    Article  PubMed  Google Scholar 

  25. Toubi, E., A. Kessel, G. Grushko, E. Sabo, M. Rozenbaum, and I. Rosner. 2002. The association of serum matrix metalloproteinases and their tissue inhibitor levels with scleroderma disease severity. Clinical and Experimental Rheumatology 20: 221–224.

    PubMed  CAS  Google Scholar 

  26. Ihn, H. 2008. Autocrine TGF-beta signaling in the pathogenesis of systemic sclerosis. Journal of Dermatological Science 49: 103–113.

    Article  PubMed  CAS  Google Scholar 

  27. Varga, J., and D. Abraham. 2007. Systemic sclerosis: a prototypic multisystem fibrotic disorder. The Journal of Clinical Investigation 117: 557–567.

    Article  PubMed  CAS  Google Scholar 

  28. Koca, S.S., A. Isik, I.H. Ozercan, B. Ustundag, B. Evren, and K. Metin. 2008. Effectiveness of etanercept in bleomycin-induced experimental scleroderma. Rheumatology (Oxford, England) 47: 172–175.

    Article  CAS  Google Scholar 

  29. Yoshizaki, A., K. Yanaba, A. Yoshizaki, Y. Iwata, K. Komura, F. Ogawa, M. Takenaka, K. Shimizu, Y. Asano, M. Hasegawa, M. Fujimoto, and S. Sato. 2010. Treatment with rapamycin prevents fibrosis in tight-skin and bleomycin-induced mouse models of systemic sclerosis. Arthritis and Rheumatism 62: 2476–87.

    Article  PubMed  CAS  Google Scholar 

  30. Li, Y., D.W. Wang, L.W. Song, R.Y. Peng, Y.B. Gao, and J.J. Ma. 2005. [Effects of TGFbeta1 on the transcriptional activity of SP1, AP1 and Smad3-Smad4 in lung fibroblasts] Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 21: 679–682.

  31. Zhang, F., and M. Laiho. 2003. On and off: proteasome and TGF-beta signaling. Experimental Cell Research 291: 275–281.

    Article  PubMed  CAS  Google Scholar 

  32. Nakano, H., A. Nakajima, S. Sakon-Komazawa, J.H. Piao, X. Xue, and K. Okumura. 2006. Reactive oxygen species mediate crosstalk between NF-kappaB and JNK. Cell Death and Differentiation 13: 730–737.

    Article  PubMed  CAS  Google Scholar 

  33. Shi-wen, X., S.K. Parapuram, D. Pala, Y. Chen, D.E. Carter, M. Eastwood, C.P. Denton, D.J. Abraham, and A. Leask. 2009. Requirement of transforming growth factor beta-activated kinase 1 for transforming growth factor beta-induced alpha-smooth muscle actin expression and extracellular matrix contraction in fibroblasts. Arthritis and Rheumatism 60: 234–241.

    Article  PubMed  Google Scholar 

  34. Baumann, P., K. Müller, S. Mandl-Weber, J. Leban, R. Doblhofer, A. Ammendola, R. Baumgartner, F. Oduncu, and R. Schmidmaier. 2009. The peptide-semicarbazone S-2209, a representative of a new class of proteasome inhibitors, induces apoptosis and cell growth arrest in multiple myeloma cells. British Journal of Haematology 144: 875–886.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang, L., P.J. Ebenezer, K. Dasuri, A.J. Bruce-Keller, Y. Liu, and J.N. Keller. 2009. Proteasome inhibition modulates kinase activation in neural cells: relevance to ubiquitination, ribosomes, and survival. Journal of Neuroscience Research 87: 3231–3238.

    Article  PubMed  CAS  Google Scholar 

  36. Fineschi, S., M. Bongiovanni, Y. Donati, S. Djaafar, F. Naso, L. Goffin, et al. 2008. In vivo investigations on anti-fibrotic potential of proteasome inhibition in lung and skin fibrosis. American Journal of Respiratory Cell and Molecular Biology 39: 458–465.

    Article  PubMed  CAS  Google Scholar 

  37. Schwartz, D.R., G.E. Homanics, D.G. Hoyt, E. Klein, J. Abernethy, and J.S. Lazo. 1999. The neutral cysteine protease bleomycin hydrolase is essential for epidermal integrity and bleomycin resistance. Proceedings of the National Academy of Sciences of the United States of America 96: 4680–4685.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare no conflict of interest.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suleyman Serdar Koca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koca, S.S., Ozgen, M., Dagli, F. et al. Proteasome Inhibition Prevents Development of Experimental Dermal Fibrosis. Inflammation 35, 810–817 (2012). https://doi.org/10.1007/s10753-011-9380-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-011-9380-y

KEY WORDS

Navigation