Skip to main content

Advertisement

Log in

Lake Caviahue: an extreme environment as a potential sentinel for nutrient deposition in Patagonia

  • PATAGONIAN LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The objective of this study was to determine if extreme acidic Lake Caviahue could be used as a sentinel of atmospheric deposition hypothesizing that the physiological state of algae will be the indicator parameter. The lake was sampled from 2000 to 2015 in order to determine chlorophyll concentration, algae abundance and phytoplankton in vivo fluorescence as a way to evaluate the physiological state of algae. Development and physiological state of phytoplankton in different seasons was related to concentration and dynamics of nutrients in the lake. Laboratory experiments of Keratococcus rhaphidiodes to nitrogen (N) enrichment confirmed that an increase in nutrient content enabled a better physiological state of algae (e.g. higher chlorophyll per cell). Therefore, under the projected scenarios of climate change, the increase of available N through the increase in deposition and the increase of dissolved inorganic carbon, as consequence of higher atmospheric CO2, will compensate the natural nutrient constraints observed in the phytoplankton of the lake. The effect that the atmospheric CO2 has on the DIC, and this on algal development, as well as the influence that N has on algal growth, make Lake Caviahue an interesting sentinel of nutrient deposition at regional level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adrian, R., C. O’Reilly, H. Zagarese, S. Baines, D. Hessen, W. Keller, D. Livingstone, R. Sommaruga, D. Straile, E. Van Donk, G. Weyhenmeyer & M. Winder, 2009. Lakes as sentinels of climate change. Limnology and Oceanography 54: 2283–2297.

    Article  PubMed  PubMed Central  Google Scholar 

  • APHA, 1992. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington.

    Google Scholar 

  • Baffico, G., 2013. Optical properties and light penetration in a deep, naturally acidic, iron rich lake: Lago Caviahue (Patagonia, Argentina). Limnologica 43: 475–481.

    Article  CAS  Google Scholar 

  • Baffico, G., M. Diaz, M. Wenzel, M. Koschorreck, M. Schimmele, T. Neu & F. Pedrozo, 2004. Community structure and photosynthetic activity of epilithon from a highly acidic (pH ≤ 2) mountain stream in Patagonia, Argentina. Extremophiles 8: 463–473.

    Article  CAS  PubMed  Google Scholar 

  • Beamud, S., M. Diaz & F. Pedrozo, 2007. Summer phytoplankton composition and nitrogen limitation of the deep, naturally-acidic (pH ~ 2.2) Lake Caviahue, Patagonia, Argentina. Limnologica 37: 37–48.

    Article  CAS  Google Scholar 

  • Beamud, G., M. Diaz, N. Baccalá & F. Pedrozo, 2010a. Analysis of patterns of vertical and temporal distribution of phytoplankton using statistical tools: lake Caviahue, Patagonia, Argentina. Limnologica 40: 140–147.

    Article  CAS  Google Scholar 

  • Beamud, S., M. Diaz & F. Pedrozo, 2010b. Nutrient limitation of phytoplankton in a naturally acidic lake (Lake Caviahue, Argentina). Limnology 11: 103–113.

    Article  CAS  Google Scholar 

  • Bock, E., H. P. Koops & H. Harms, 1986. Cell Biology of Nitrifying Bacteria. In Prosser, J. I. (ed.), Nitrification. IRL Press, Society for General Microbiology, Oxford: 17–38.

    Google Scholar 

  • Camacho, A. & E. Fernández-Valiente, 2005. Un mundo dominado por los microorganismos. Ecología microbiana de los lagos antárticos. Ecosistemas 14: 66–78.

    Google Scholar 

  • Christensen, M., M. Graham, R. Vinebrooke, D. Findlay, M. Paterson & M. Turner, 2006. Multiple anthropogenic stressors cause ecological surprises in boreal lakes. Global Change Biology 12: 2316–2322.

    Article  Google Scholar 

  • Civerolo, K., C. Hogrefe, B. Lynn, C. Rosenzweig, R. Goldberg, J. Rosenthal, K. Knowlton & P. Kinney, 2008. Simulated effects of climate change on summertime nitrogen deposition in the eastern US. Atmospheric Environment 42: 2074–2082.

    Article  CAS  Google Scholar 

  • Cleveland, J. & M. Perry, 1987. Quantum yield, relative specific absorption and fluorescence in nitrogen-limited Chaetoceros gracilis. Marine Biology 94: 489–497.

    Article  CAS  Google Scholar 

  • Daufresne, M., K. Lengfellner & U. Sommer, 2009. Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106: 12788–12793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dentener, F., J. Drevet, J. Lamarque, I. Bey, B. Eickhout, A. Fiore, D. Hauglustaine, L. Horowitz, M. Krol, U. Kulshrestha, M. Lawrence, C. Galy-Lacaux, S. Rast, D. Shindell, D. Stevenson, T. Van Noije, C. Atherton, N. Bell, D. Bergman, T. Butler, J. Cofala, B. Collins, R. Doherty, K. Ellingsen, J. Galloway, M. Gauss, V. Montanaro, J. Müller, G. Pitari, J. Rodriguez, M. Sanderson, F. Solmon, S. Strahan, M. Schultz, K. Sudo, S. Szopa & O. Wild, 2006. Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochemical Cycles 20: GB4003.

    Article  Google Scholar 

  • Field, C. B., V. R. Barros, K. J. Mach, M. D. Mastrandrea, M. van Aalst, W. N. Adger, D. J. Arent, J. Barnett, R. Betts, T. E. Bilir, J. Birkmann, J. Carmin, D. D. Chadee, A. J. Challinor, M. Chatterjee, W. Cramer, D. J. Davidson, Y. O. Estrada, J.-P. Gattuso, Y. Hijioka, O. Hoegh-Guldberg, H. Q. Huang, G. E. Insarov, R. N. Jones, R. S. Kovats, P. Romero-Lankao, J. N. Larsen, I. J. Losada, J. A. Marengo, R. F. McLean, L. O. Mearns, R. Mechler, J. F. Morton, I. Niang, T. Oki, J. M. Olwoch, M. Opondo, E. S. Poloczanska, H.-O. Pörtner, M. H. Redsteer, A. Reisinger, A. Revi, D. N. Schmidt, M. R. Shaw, W. Solecki, D. A. Stone, J. M. R. Stone, K. M. Strzepek, A. G. Suarez, P. Tschakert, R. Valentini, S. Vicuña, A. Villamizar, K. E. Vincent, R. Warren, L. L. White, T. J. Wilbanks, P. P. Wong & G. W. Yohe, 2014. Technical summary. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea & L. L. White (eds), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge: 35–94.

  • Gammons, C., S. Wood, F. Pedrozo, J. Varekamp, B. Nelson, C. Shope & G. Baffico, 2005. Hydrogeochemistry and rare earth element behavior in a volcanically acidified watershed in Patagonia, Argentina. Chemical Geology 222: 249–267.

    Article  CAS  Google Scholar 

  • Geider, R., 1987. Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. New Phytologist 106: 1–34.

    Article  CAS  Google Scholar 

  • Gruber, N. & J. Galloway, 2008. An earth-system perspective of the global nitrogen cycle. Nature 451: 293–296.

    Article  CAS  PubMed  Google Scholar 

  • Heaney, S., 1978. Some observations on the use of the in vivo fluorescence technique to determine chlorophyll-a in natural populations and cultures of freshwater phytoplankton. Freshwater Biology 8: 115–126.

    Article  CAS  Google Scholar 

  • Hessen, D., T. Andersen, S. Larsen, B. Skjelkvåle & H. de Wit, 2009. Nitrogen deposition, catchment productivity, and climate as determinants of lake stoichiometry. Limnology and Oceanography 54: 2520–2528.

    Article  CAS  Google Scholar 

  • Hill, G. J. C. & L. Machlis, 1970. Defined media for growth and gamete production by the green alga Oedogonium cardiacum. Plant Physiology 46: 224–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillebrand, H., C.-D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Huertas, I., M. Rouco, V. López-Rodas & E. Costas, 2011. Warming will affect phytoplankton differently: evidence through a mechanistic approach. Proceedings of the Royal Society B. doi:10.1098/rspb.2011.0160.

    PubMed  PubMed Central  Google Scholar 

  • IPCC, 2013a. Annex I: Atlas of Global and Regional Climate Projections [G. J. van Oldenborgh, M. Collins, J. Arblaster, J. H. Christensen, J. Marotzke, S. B. Power, M. Rummukainen and T. Zhou (eds.)]. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

  • IPCC, 2013b. Annex II: Climate System Scenario Tables [M. Prather, G. Flato, P. Friedlingstein, C. Jones, J.-F. Lamarque, H. Liao and P. Rasch (eds)]. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

  • Juergens, M., R. Deshpande, B. Lucker, J.-J. Park, H. Wang, M. Gargouri, F. Holguin, B. Disbrow, T. Schaub, J. Skepper, D. Kramer, D. Gang, L. Hicks & Y. Shachar-Hill, 2015. The regulation of photosynthetic structure and function during nitrogen deprivation in Chlamydomonas reinhardtii. Plant Physiology 167: 558–573.

    Article  CAS  PubMed  Google Scholar 

  • Kiefer, D., 1973. Chlorophyll a fluorescence in marine centric diatoms: responses of chloroplasts to light and nutrient stress. Marine Biology 23: 39–46.

    Article  Google Scholar 

  • Livingstone, D. & M. Dokulil, 2001. Eighty years of spatially coherent Austrian lake surface temperatures and their relationship to regional air temperature and the North Atlantic Oscillation. Limnology and Oceanography 46: 1220–1227.

    Article  Google Scholar 

  • Mackereth, F., J. Heron & J. Talling, 1978. Water analysis: Some revised methods for limnologists. Scientific Publication No 36. Freshwater Biological Association, Ambleside.

    Google Scholar 

  • Montagnes, D., J. Berges, P. Harrison & F. Taylor, 1994. Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnology and Oceanography 39: 1044–1060.

    Article  CAS  Google Scholar 

  • Montgomery, D., 2005. Design and analysis of experiments, 5th ed. Wiley & Sons, New York.

    Google Scholar 

  • Morán, X., Á. López-Urrutia, A. Calvo-Díaz & W. Li, 2010. Increasing importance of small phytoplankton in a warmer ocean. Global Change Biology 16: 1137–1144.

    Article  Google Scholar 

  • Pedrozo, F., S. Chillrud, P. Temporetti & M. Diaz, 1993. Chemical composition and nutrient limitation in rivers and lakes of northern Patagonian Andes (35.5°–42°S, 71°W) (Rep. Argentina). Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 25: 207–214.

    CAS  Google Scholar 

  • Pedrozo, F., L. Kelly, M. Diaz, P. Temporetti, G. Baffico, R. Kringel, K. Friese, M. Mages, W. Geller & S. Woelfl, 2001. First results on the water chemistry, algae and trophic status of an Andean acidic lake system of volcanic origin in Patagonia (Lake Caviahue). Hydrobiologia 452: 129–137.

    Article  CAS  Google Scholar 

  • Pedrozo, F., P. Temporetti, G. Beamud & M. Diaz, 2008. Volcanic nutrient inputs and trophic state of Lake Caviahue, Patagonia, Argentina. Journal of Volcanology and Geothermal Research 178: 205–212.

    Article  CAS  Google Scholar 

  • Satake, K. & Y. Saijo, 1974. Carbon dioxide content and metabolic activity of microorganisms in some acid lakes in Japan. Limnology and Oceanography 19: 331–338.

    Article  CAS  Google Scholar 

  • Sauer, J., U. Schreiber, R. Schmid, U. Völker & K. Forchhammer, 2001. Nitrogen starvation-induced chlorosis in Synechococcus PCC 7942. Low-level photosynthesis as a mechanism of long-term survival. Plant Physiology 126: 233–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schindler, D., 2009. Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes. Limnology and Oceanography 54: 2349–2358.

    Article  CAS  Google Scholar 

  • Seebens, H., D. Straile, R. Hoegg, H. Stich & U. Einsle, 2007. Population dynamics of a freshwater calanoid copepod: complex responses to changes in trophic status and climate variability. Limnology and Oceanography 52: 2364–2372.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Vandonk, E., D. Hessen, A. Verschoor & R. Gulati, 2008. Re-oligotrophication by phosphorus reduction and effects on seston quality in lakes. Limnologica 38: 189–202.

    Article  CAS  Google Scholar 

  • Varekamp, J., 2008. The volcanic acidification of glacial Lake Caviahue, Province of Neuquen, Argentina. Journal of Volcanology and Geothermal Research 178: 184–196.

    Article  CAS  Google Scholar 

  • Williamson, C., J. Saros, W. Vincent & J. Smol, 2009. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnology and Oceanography 54: 2273–2282.

    Article  Google Scholar 

  • Wynn-Williams, D., 1996. Antarctic microbial diversity: the basis of polar ecosystem processes. Biodiversity and Conservation 5: 1271–1293.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Pepe di Giusto for field help and three anonymous reviewers for helping to improve the manuscript. This study was funded by grants from Agencia Nacional de Promoción Científica y Tecnológica (PICT 2012/1389), Consejo Nacional de Investigaciones Científicas y Tecnológicas (PIP 11220090100013) and Universidad Nacional del Comahue (Prog. B04/166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Baffico.

Additional information

Guest editors: Beatriz E. Modenutti & Esteban G. Balseiro / Andean Patagonian Lakes as Sensor of Global Change

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baffico, G., Diaz, M., Beamud, G. et al. Lake Caviahue: an extreme environment as a potential sentinel for nutrient deposition in Patagonia. Hydrobiologia 816, 49–60 (2018). https://doi.org/10.1007/s10750-017-3281-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3281-5

Keywords

Navigation