Skip to main content
Log in

Comparing the spatial attractiveness of hospitals using zero-inflated spatial models

  • Published:
Health Services and Outcomes Research Methodology Aims and scope Submit manuscript

Abstract

Policy makers increasingly rely on hospital competition to incentivize patients to choose high-value care. Amongst all possible drivers, the travel distance without any doubt is one of the most important. In this paper we propose the use of a spatial Bayesian hierarchical model to assess the impact of distance on the number of patient admissions in hospitals, and thereby, compare hospital attractiveness. To this aim a MCMC sampler has been designed. We apply our methodology to patient admissions for asthma in four hospitals located in the Hérault department of France. Results indicate that the most attractive hospital is the CHU Montpellier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agarwal, D.K., Gelfand, A.E., Citron-Pousty, S.: Zero-inflated models with application to spatial count data. Environ. Ecol. Stat. 9(4), 341–355 (2002)

    Article  Google Scholar 

  • Aho, K.: asbio: a collection of statistical tools for biologists. R Package Version 1. 1–5 (2015)

  • Banerjee, S., Carlin, B., Gelfand, A.: Hierarchical modeling and analysis for spatial statistics. Chapman & Hall/CRC, New York (2004)

    Google Scholar 

  • Berger, J.O., De Oliveira, V., Sansó, B.: Objective bayesian analysis of spatially correlated data. J. Am. Stat. Assoc. 96(456), 1361–1374 (2001)

    Article  Google Scholar 

  • Chevreul, K., Durand-Zaleski, I., Bahrami, S., Hernández-Quevedo, C., Mladovsky, P.: Health system review. Erasmus 12, 93–103 (2010)

    Google Scholar 

  • Cohen, A.C.: Estimation in mixtures of discrete distributions. Statistical Pub. Society (1963)

  • Davison, A., Padoan, S., Ribatet, M.: Statistical modelling of spatial extremes. Stat. Sci. 7(2), 161–186 (2012)

    Article  Google Scholar 

  • Gelfand, A.E., Smith, A.F.: Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85(410), 398–409 (1990)

    Article  Google Scholar 

  • Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian data analysis. In: Texts in Statistical Science Series (2004)

  • Greene, W.H.: Accounting for excess zeros and sample selection in poisson and negative binomial regression models (1994)

  • Johnson, N.L., Kotz, S.: Distributions in Statistics. Wiley, Hoboken (1969)

    Google Scholar 

  • Jung, K., Feldman, R., Scanlon, D.: Where would you go for your next hospitalization? J. Health Econ. 30(4), 832–841 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambert, D.: Zero-inflated poisson regression, with an application to defects in manufacturing. Technometrics 34(1), 1–14 (1992)

    Article  Google Scholar 

  • Propper, C., Leckie, G.: Increasing competition between providers in health care markets: the economic evidence (2011)

  • R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2017)

  • Sang, H., Gelfand, A.: Continuous spatial process models for spatial extreme values. J. Agric. Biol. Environ. Stat. 15(1), 49–65 (2010)

    Article  Google Scholar 

  • Spiegelhalter, D.J., Best, N.G., Carlin, B.P., Van Der Linde, A.: Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 64(4), 583–639 (2002)

    Article  Google Scholar 

  • Varkevisser, M., van der Geest, S.A., Schut, F.T.: Assessing hospital competition when prices don’t matter to patients: the use of time-elasticities. Int. J. Health Care Finance Econ. 10(1), 43–60 (2010)

    Article  PubMed  Google Scholar 

  • Victoor, A., Delnoij, D.M., Friele, R.D., Rademakers, J.J.: Determinants of patient choice of healthcare providers: a scoping review. BMC Health Serv. Res. 12(1), 272 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, H.: Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics. J. Am. Stat. Assoc. 99(465), 250–261 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Saley.

Ethics declarations

Conflict of interest

We, the authors, declare that we have no conflicts of interest.

Human and animals rights

That this article does not contain any studies with human participants or animals performed by any of us.

Appendix A

Appendix A

In this section, we give the derivation of conditional parameters distributions for the ZIP model. To obtain the derivation for the ZINB model, the distributions used in the ZIP model have to be replaced by those used in the ZINB model. As a reminder, (a) Bayes formula is

$$\begin{aligned} \pi (\theta \mid x) =\frac{\pi (x\mid \theta )\pi (\theta )}{\int \pi (x\mid \theta )\pi (\theta )\,d\theta }\propto \pi (x\mid \theta )\pi (\theta ), \end{aligned}$$

where \(\pi (\theta \mid x)\) is called the posterior distribution, \(\pi (\theta )\) the prior distribution and \(\pi (x\mid \theta )\), the likelihood. b) and the prior distributions used in this case study for the ZIP model are

$$\begin{aligned} \begin{array}{lll} \beta _{0,h}\sim \frac{1}{10^3\sqrt{2\pi }}\exp \left\{ -~\frac{\beta _{0,h}^2}{2*10^6}\right\} &{} {}&{}\beta _{1,h}\sim \frac{1}{10^3\sqrt{2\pi }}\exp \left\{ -~\frac{\beta _{1,h}^2}{2*10^6}\right\} \\ \tau _h\sim \frac{1}{\Gamma (1)}(1/\tau _h)^{2}\exp \{-~1/\tau _h\} &{}{}&{} \omega _h\sim \frac{1}{\Gamma (1)}(1/\omega _h)^{2}\exp \{-~1/\omega _h\}\\ \theta \sim \frac{1}{10^3\sqrt{2\pi }}\exp \left\{ -~\frac{\theta ^2}{2*10^6}\right\} &{} {}&{}{} \end{array} \end{aligned}$$

Let’s call \(\pi \{y({\mathbf {x}}),\theta ,\lambda ({\mathbf {x}}),\beta _0,\beta _1,\tau ,\omega \}\) (with \(\lambda ({\mathbf {x}})\), \(\beta _0\), \(\beta _1\), \(\tau\) and \(\omega\) as defined in Sect. 4), the joint distribution for model parameters and the data. Using the definition of conditional probabilities and assuming parameters independence within their prior distributions, we show that

$$\begin{aligned}&\pi \{y({\mathbf {x}}),\theta ,\lambda ({\mathbf {x}}),\beta _0,\beta _1,\tau ,\omega \} = \pi \{y({\mathbf {x}})\mid \theta ,\lambda ({\mathbf {x}})\}\pi \{\theta \}\\&\quad \times\prod _{h=1}^{4}\pi \{\lambda _h({\mathbf {x}})\mid \beta _{0,h},\beta _{1,h},\tau _h,\omega _h\}\pi \{\beta _{0,h}\}\pi \{\beta _{1,h}\}\pi \{\tau _h\}\pi \{\omega _h\} \end{aligned}$$
(4)

Then using Bayes formula and Eq. 4, we derive the conditional distributions

$$\begin{aligned} \begin{array}{l} \pi \{\theta \mid y({\mathbf {x}}),\lambda ({\mathbf {x}}),\beta _0,\beta _1,\tau ,\omega \} \propto \pi \{y({\mathbf {x}})\mid \theta ,\lambda ({\mathbf {x}})\} \pi (\theta )\\ \pi \{\lambda _h({\mathbf {x}})\mid y({\mathbf {x}}),\lambda _{-h}({\mathbf {x}}),\theta ,\beta _0,\beta _1,\tau ,\omega \} \propto \pi \{y({\mathbf {x}})\mid \theta , \lambda ({\mathbf {x}})\}\times \\ \qquad\qquad{} \pi \{\lambda _h({\mathbf {x}})\mid \beta _{0,h},\beta _{1,h},\tau _h,\omega _h\}\\ \pi \{\beta _{0,h} \mid y({\mathbf {x}}),\theta ,\lambda ({\mathbf {x}}),\beta _{0,-h},\beta _1,\tau ,\omega \} \propto \pi \{\lambda _h({\mathbf {x}})\mid \beta _{0,h},\beta _{1,h},\tau _h,\omega _h\}\pi (\beta _{0,h})\\ \pi \{\beta _{1,h} \mid y({\mathbf {x}}),\theta ,\lambda ({\mathbf {x}}),\beta _0,\beta _{1,-h},\tau ,\omega \} \propto \pi \{\lambda _h({\mathbf {x}})\mid \beta _{0,h},\beta _{1,0},\tau _h,\omega _h\}\pi (\beta _{1,h})\\ \pi \{\tau _h \mid y({\mathbf {x}}),\theta ,\lambda ({\mathbf {x}}),\beta _0,\beta _1,\tau _{-h},\omega \} \propto \pi \{\lambda _h({\mathbf {x}}) \mid \beta _{0,h},\beta _{1,h},\tau _h,\omega _\}\pi (\tau _h)\\ \pi \{\omega _h \mid y({\mathbf {x}}),\theta ,\lambda ({\mathbf {x}}),\beta _0,\beta _1,\tau ,\omega _{-h}\} \propto \pi \{\lambda _h({\mathbf {x}})\mid \beta _{0,h},\beta _{1,h},\tau _h,\omega _h\}\pi (\omega _h) \end{array} \end{aligned}$$

which have to be used in the Gibbs sampling. To obtain the explicit form of these distributions, every term in the right members has to be replaced by its mathematical expression. Thus, let’s denote \(n_{1,h}\) the number of locations where we count zero stays for a hospital h and \(n_{2,h}\) the number of locations where we have at least one stay in the hospital. From Eq. 1, Sect. 3.1,

$$\begin{aligned}&\pi (y({\mathbf {x}})\mid \theta ,\lambda ({\mathbf {x}})) =\prod _{h=1}^4\prod _{i=1}^{n_{1,h}}\left[ \frac{1}{1+\exp \{-~\theta \}}+\left( 1-\frac{1}{1+\exp \{-~\theta \}}\right) \exp \{-~\lambda _h(x_i)\}\right] \nonumber \\&\quad \times ~\prod _{j=1}^{n_{2,h}}\left[ \left( 1-~\frac{1}{1+\exp \{-\theta \}}\right) \frac{\lambda _h(x_j)^{y(x_j)}}{y(x_j)\text{! }} \exp \{-~\lambda _h(x_j)\}\right] \end{aligned}$$
(5)

and by definition in Sect. 3.2

$$\begin{aligned}&\pi \{\lambda _h({\mathbf {x}})\mid \beta _{0,h},\beta _{1,h},\tau _h,\omega _h\} = (2\pi )^{-n/2}|\gamma _h({\mathbf {x}})|^{-1/2}\nonumber \\&\quad \times ~\prod _{i=1}^{n}\lambda _h^{-1}(x_i)\exp \left\{ -~\frac{1}{2}\left[ \log \lambda _h({\mathbf {x}})-\mu _h({\mathbf {x}})\right] ^T\gamma _h({\mathbf {x}})^{-1}\left[ \log \lambda _h({\mathbf {x}})-\mu _h({\mathbf {x}})\right] \right\} \end{aligned}$$
(6)

By replacing every term by its explicit expression, we obtain

$$\begin{aligned}&\pi (\theta \mid y({\mathbf {x}}),\lambda ({\mathbf {x}}),\beta _0,\beta _1,\tau ,\omega ) \propto \prod _{h=1}^4\prod _{i=1}^{n_{1,h}}\left[ \frac{1}{1+\exp \{-~\theta \}}+\frac{\exp \{-~\theta \}}{1+\exp \{-~\theta \}}\exp \{-~\lambda _h(x_i)\}\right] \\ {}&\quad \times \left[ \frac{\exp \{-~\theta \}}{1+\exp \{-~\theta \}}\right] ^{n_{2,h}}\exp \left\{ -~\frac{\theta ^2}{2*10^6}\right\} \\ \\&\pi (\beta _{0,h} \mid y({\mathbf {x}}),\lambda ({\mathbf {x}}),\beta _{0,-h},\beta _1,\tau ,\omega ,\theta )\propto \exp \left\{ -~\frac{1}{2}\left[ \log \lambda _h({\mathbf {x}})-\mu _h({\mathbf {x}})\right] '\gamma _h({\mathbf {x}})^{-1}\left[ \log \lambda _h({\mathbf {x}})-\mu _h({\mathbf {x}})\right] \right\} \\&\quad \times \exp \left\{ -~\frac{\beta _{0,h}^2}{2*10^6}\right\} \\&\pi (\beta _{1,h} \mid y({\mathbf {x}}),\lambda ({\mathbf {x}}),\beta _0,\beta _{1,-h},\tau ,\omega ,\theta )\propto \exp \left\{ -\frac{1}{2}\left[ \log \lambda _h({\mathbf {x}})-\mu _h({\mathbf {x}})\right] '\gamma _h({\mathbf {x}})^{-1}\left[ \log \lambda _h({\mathbf {x}})-\mu _h({\mathbf {x}})\right] \right\} \\&\quad \times \exp \left\{ -\frac{\beta _{1,h}^2}{2*10^6}\right\} \\&\pi (\tau _h \mid y({\mathbf {x}}),\theta ,\lambda ({\mathbf {x}}),\beta _0,\beta _1,\tau _{-h},\omega )\propto \exp \left\{ -~\frac{1}{2}\left[ \log \lambda _h({\mathbf {x}})-\mu _h({\mathbf {x}})\right] '\gamma _h({\mathbf {x}})^{-1}\left[ \log \lambda _h({\mathbf {x}})-\mu _h({\mathbf {x}})\right] \right\} \\ {}&\quad \times ~|\gamma _h({\mathbf {x}})|^{-1/2}(1/\tau _h)^2\exp \{-~1/\tau _h\}\\&\pi (\omega _h \mid y({\mathbf {x}}),\theta ,\lambda ({\mathbf {x}}),\beta _0,\beta _1,\tau ,\omega _{-h})\propto \exp \left\{ -~\frac{1}{2}\left[ \log \lambda _h({\mathbf {x}})-\mu _h({\mathbf {x}})\right] '\gamma _h({\mathbf {x}})^{-1}\left[ \log \lambda _h({\mathbf {x}})-\mu _h({\mathbf {x}})\right] \right\} \\&\quad \times |\gamma _h({\mathbf {x}})|^{-1/2}(1/\omega _h)^2\exp \{-~1/\omega _h\} \\&\pi (\lambda _h({\mathbf {x}})\mid y({\mathbf {x}}),\theta ,\lambda _{-h}(\mathbf (x),\beta _0,\beta _1,\tau ,\omega ) \propto \exp \left\{ -~\frac{1}{2}\left[ \log \lambda _h({\mathbf {x}})-\mu _h({\mathbf {x}})\right] '\gamma _h({\mathbf {x}})^{-1}\left[ \log \lambda ({\mathbf {x}})-\mu ({\mathbf {x}})\right] \right\} \\&\quad \times ~\prod _{k=1}^{n}\lambda _h^{-1}(x_k)\prod _{j=1}^{n_{2,h}}\left[ \frac{\lambda _h(x_j)^{y(x_j)}}{y(x_j)\text{! }} \exp \{-~\lambda _h(x_j)\}\right] \\&\quad \times ~\prod _{i=1}^{n_{1,h}}\left[ \frac{1}{1+\exp \{-~\theta \}}+\frac{\exp \{-~\theta \}}{1+\exp \{-~\theta \}}\exp \{-~\lambda _h(x_i)\}\right] \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saley, I., Molinari, N. & Ribatet, M. Comparing the spatial attractiveness of hospitals using zero-inflated spatial models. Health Serv Outcomes Res Method 18, 128–141 (2018). https://doi.org/10.1007/s10742-018-0181-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10742-018-0181-8

Keywords

Navigation