Skip to main content

Advertisement

Log in

LPS-induced autophagy in human dental pulp cells is associated with p38

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Lipopolysaccharides (LPS), which are components of the cell wall of Gram-negative bacteria, are among the important factors that induce inflammation, including pulpitis. Autophagy in human dental pulp cells (hDPCs) acts as a protective mechanism that promotes cell survival under adverse conditions through different signaling pathways. In this study, we examined whether LPS increases autophagy in hDPCs and investigated the role of mitogen-activated protein kinases signaling and nuclear factor κB (NF-κB) in this process. We found that stimulation of hDPCs with 0.1 µg/mL LPS increased the protein and mRNA levels of autophagy markers, beclin1 and microtubule associated protein light chain 3II (LC3II). In addition, acridine orange staining and transmission electron microscopy demonstrated the induction of autophagy upon the treatment of LPS. Furthermore, LPS affected phosphorylation of p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), and the nuclear translocation of NF-κB. While p38 inhibitor suppressed the LPS-induced increase in protein levels of beclin1 and LC3-II. Our results suggest that LPS induced autophagy in hDPCs and affected the phosphorylation of p38, ERK, and JNK, as well as the nuclear translocation of NF-κB. Phosphorylation of p38 may be involved in LPS-induced autophagy in hDPCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chen M, Liu J, Yang W, Ling W (2017) Lipopolysaccharide mediates hepatic stellate cell activation by regulating autophagy and retinoic acid signaling. Autophagy 13:1813–1827

    Article  Google Scholar 

  • Eskelinen EL, Reggiori F, Baba M, Kovacs AL, Seglen PO (2011) Seeing is believing: the impact of electron microscopy on autophagy research. Autophagy 7:935–956

    Article  CAS  Google Scholar 

  • Gao Y, You X, Liu Y, Gao F, Zhang Y, Yang J, Yang C (2020) Induction of autophagy protects human dental pulp cells from lipopolysaccharide-induced pyroptotic cell death. Exp Ther Med 19:2202–2210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gong QM, Jiang HP, Wei XP, Ling JP, Wang JP (2010) Expression of erythropoietin and erythropoietin receptor in human dental pulp. J Endod 36:1972–1977

    Article  Google Scholar 

  • Han C, Ding Z, Shi H, Qian W, Hou X, Lin R (2016) The role of probiotics in lipopolysaccharide-induced Autophagy in intestinal epithelial cells. Cell Physiol Biochem 38:2464–2478

    Article  CAS  Google Scholar 

  • He Y, She H, Zhang T, Xu H, Cheng L, Yepes M, Zhao Y, Mao Z (2018) p38 MAPK inhibits autophagy and promotes microglial inflammatory responses by phosphorylating ULK1. J Cell Biol 217:315–328

    Article  CAS  Google Scholar 

  • Huang Y, Jiang H, Gong Q, Li X, Ling J (2015a) Lipopolysaccharide stimulation improves the odontoblastic differentiation of human dental pulp cells. Mol Med Rep 11:3547–3552

    Article  CAS  Google Scholar 

  • Jung CH, Ro S, Cao J, Otto NM, Kim D (2010) mTOR regulation of autophagy. Febs Lett 584:1287–1295

    Article  CAS  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO JOURNAL 19:5720–5728

    Article  CAS  Google Scholar 

  • Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    Article  CAS  Google Scholar 

  • Li L, Zhu YQ, Jiang L, Peng W (2012) Increased autophagic activity in senescent human dental pulp cells. Int Endod J 45:1074–1079

    Article  CAS  Google Scholar 

  • Li Y, Wang H, Pei F, Chen Z, Zhang L (2018) FoxO3a regulates inflammation-induced Autophagy in odontoblasts. J Endod 44:786–791

    Article  Google Scholar 

  • Liu J, Wang X, Zheng M, Luan Q (2018) Lipopolysaccharide from Porphyromonas gingivalis promotes autophagy of human gingival fibroblasts through the PI3K/Akt/mTOR signaling pathway. Life Sci 211:133–139

    Article  CAS  Google Scholar 

  • Marino G, Lopez-Otin C (2004) Autophagy: molecular mechanisms, physiological functions and relevance in human pathology. Cell Mol Life Sci 61:1439–1454

    Article  CAS  Google Scholar 

  • Meng N, Zhao J, Su L, Zhao B, Zhang Y, Zhang S, Miao J (2012a) A butyrolactone derivative suppressed lipopolysaccharide-induced autophagic injury through inhibiting the autoregulatory loop of p8 and p53 in vascular endothelial cells. Int J Biochem Cell Biol 44:311–319

    Article  CAS  Google Scholar 

  • Meng N, Zhao J, Su L, Zhao B, Zhang Y, Zhang S, Miao J (2012b) A butyrolactone derivative suppressed lipopolysaccharide-induced autophagic injury through inhibiting the autoregulatory loop of p8 and p53 in vascular endothelial cells. Int J Biochem Cell Biol 44:311–319

    Article  CAS  Google Scholar 

  • Mizushima N (2005) The pleiotropic role of autophagy: from protein metabolism to bactericide. Cell Death Differ 12(Suppl 2):1535–1541

    Article  CAS  Google Scholar 

  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  CAS  Google Scholar 

  • Park SY, Sun EG, Lee Y, Kim MS, Kim JH, Kim WJ, Jung JY (2018) Autophagy induction plays a protective role against hypoxic stress in human dental pulp cells. J Cell Biochem 119:1992–2002

    Article  CAS  Google Scholar 

  • Sul OJ, Park HJ, Son HJ, Choi HS (2017) Lipopolysaccharide (LPS)-induced Autophagy is responsible for enhanced osteoclastogenesis. Mol Cells 40:880–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takanche JS, Kim J, Kim J, Han S, Yi H (2018) Schisandrin C enhances odontoblastic differentiation through autophagy and mitochondrial biogenesis in human dental pulp cells. Arch Oral Biol 88:60–66

    Article  CAS  Google Scholar 

  • Trocoli A, Djavaheri-Mergny M (2011) The complex interplay between autophagy and NF-κB signaling pathways in cancer cells. Am J Cancer Res 1:629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Wei X, Ling J, Huang Y, Gong Q (2010) Side population increase after simulated transient ischemia in human dental pulp cell. J Endod 36:453–458

    Article  Google Scholar 

  • Wang J, Feng X, Zeng Y, Fan J, Wu J, Li Z, Liu X, Huang R, Huang F, Yu X, Yang X (2013) Lipopolysaccharide (LPS)-induced autophagy is involved in the restriction of Escherichia coli in peritoneal mesothelial cells. BMC Microbiol 13:255

    Article  Google Scholar 

  • Wang X, Wu TT, Jiang L, Rong D, Zhu YQ (2017) Deferoxamine-induced migration and odontoblast differentiation via ROS-dependent Autophagy in dental pulp stem cells. Cell Physiol Biochem 43:2535–2547

    Article  CAS  Google Scholar 

  • Yang JW, Zhang YF, Wan CY, Sun ZY, Nie S, Jian SJ, Zhang L, Song GT, Chen Z (2015) Autophagy in SDF-1alpha-mediated DPSC migration and pulp regeneration. Biomaterials 44:11–23

    Article  CAS  Google Scholar 

  • Yoshioka A, Miyata H, Doki Y, Yamasaki M, Sohma I, Gotoh K, Takiguchi S, Fujiwara Y, Uchiyama Y, Monden M (2008) LC3, an autophagosome marker, is highly expressed in gastrointestinal cancers. Int J Oncol 33:461

    CAS  PubMed  Google Scholar 

  • Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 100:15077–15082

    Article  CAS  Google Scholar 

  • Zhou QD, Liu HD, Sun QP, Zhang LP, Lin HP, Yuan GPD, Zhang LDP, Chen ZPD (2013) Adenosine monophosphate–activated protein kinase/mammalian target of rapamycin–dependent Autophagy protects human dental pulp cells against hypoxia. J Endod 39:768–773

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Nature Science Foundation of China (No. 81700957, No. 81870750), the Natural Science Foundation of Guangdong province (No. 2016A030310197). The funding bodies had no role in the design, collection, analysis, interpretation of data, or writing of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10735_2021_10004_MOESM1_ESM.tif

Supplementary material 1 Effectsof LPS and p38 inhibitor on autophagic vacuoles in hDPCs. (A) Controlgroup shows fewer autolysosomes (×30000). (B) hDPCs stimulated with 0.1 μg/mLLPS for 12 hours contain more autolysosomes in the cytoplasm (×30000). (C)hDPCs pretreated with SB203580 before stimulation with 0.1 μg/mL LPS for 12hours contain fewer autolysosomes (×30000). Autophagic vacuoles aremarked by red arrows (tif 6099.9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Li, X., Liu, Y. et al. LPS-induced autophagy in human dental pulp cells is associated with p38. J Mol Histol 52, 919–928 (2021). https://doi.org/10.1007/s10735-021-10004-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-021-10004-2

Keywords

Navigation