Skip to main content

Advertisement

Log in

Zafirlukast promotes mitochondrial respiration by stimulating mitochondrial biogenesis in human bronchial epithelial cells

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Lung diseases, including asthma, pose a serious global health issue. Loss of mitochondrial function and decreased mitochondrial biogenesis play pivotal roles in the initiation and progression of chronic lung diseases. Thus, maintaining mitochondrial function and homeostasis is an important treatment goal. Zafirlukast is a CysLTR1 antagonist that is widely used as an adjuvant treatment for asthma. In the present study, we investigated the effects of zafirlukast in vitro using human bronchial epithelial cells (BECs). We performed measurements of oxygen consumption and bioenergetics and found that zafirlukast increased mitochondrial respiration and biogenesis in human BECs as evidenced by increased mitochondrial mass and mtDNA/nDNA. Through real-time PCR and western blot analysis, we found that zafirlukast significantly increased the expression of PGC-1α, NRF1, and TFAM at both the mRNA and protein levels. Finally, we determined that these effects are mediated through CREB signaling and that inhibition of CREB with its specific inhibitor H89 abolished the effects of zafirlukast described above. Thus, zafirlukast might have potential in enhancing mitochondrial function by promoting mitochondrial biogenesis in human bronchial epithelial cells through upregulating the expression of PGC-1α and activating the CREB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chakraborty S, Khanna K, Agrawal A (2020) Oxidative Stress-Induced Mitochondrial Dysfunction and Asthma. InOxidative Stress in Lung Diseases 141–160). Springer, Singapore.

  • Chandrasekaran K, Anjaneyulu M, Choi J, Kumar P, Salimian M, Ho CY, Russell JW (2019) Role of mitochondria in diabetic peripheral neuropathy: influencing the NAD+-dependent SIRT1–PGC-1α–TFAM pathway. Int Rev Neurobiol 145:177

    Article  CAS  Google Scholar 

  • Chen Z, Tao S, Li X, Yao Q (2018) Resistin destroys mitochondrial biogenesis by inhibiting the PGC-1α/NRF1/TFAM signaling pathway. Biochem Biophys Res Commun 504(1):13–18

    Article  CAS  Google Scholar 

  • Clapp PW, Lavrich KS, van Heusden CA, Lazarowski ER, Carson JL, Jaspers I (2019) Cinnamaldehyde in flavored e-cigarette liquids temporarily suppresses bronchial epithelial cell ciliary motility by dysregulation of mitochondrial function. Am J Physiol Lung Cell Mol Physiol 316(3):L470–L486

    Article  CAS  Google Scholar 

  • Cloonan SM, Choi AM (2016) Mitochondria in lung disease. J Clin Investig 126(3):809–820

    Article  Google Scholar 

  • Eaton A, Nagy E, Pacault M, Fauconnier J, Bäck M (2012) Cysteinyl leukotriene signaling through perinuclear CysLT 1 receptors on vascular smooth muscle cells transduces nuclear calcium signaling and alterations of gene expression. J Mol Med 90(10):1223–1231

    Article  CAS  Google Scholar 

  • Fontecha-Barriuso M, Martín-Sánchez D, Martinez-Moreno JM, Carrasco S, Ruiz-Andrés O, Monsalve M, Sanchez-Ramos C, Gómez MJ, Ruiz-Ortega M, Sánchez-Niño MD, Cannata-Ortiz P (2019) PGC-1α deficiency causes spontaneous kidney inflammation and increases the severity of nephrotoxic AKI. J Pathol 249(1):65–78

    Article  CAS  Google Scholar 

  • Gao W, Li L, Wang Y, Zhang S, Adcock IM, Barnes PJ, Huang M, Yao X (2015) Bronchial epithelial cells: the key effector cells in the pathogenesis of chronic obstructive pulmonary disease? Respirology 20(5):722–729

    Article  Google Scholar 

  • Göbel T, Diehl O, Wittmann SK, Merk D, Angioni C, Buscató E, Kottke R, Heering J, Weizel L, Schader T, Maier TJ (2019) Zafirlukast is a dual modulator of human soluble epoxide hydrolase and PPARgamma. Front Pharmacol 10:263

    Article  Google Scholar 

  • He F, Jin JQ, Qin QQ, Zheng YQ, Li TT, Zhang Y, He JD (2018) Resistin regulates fatty acid β oxidation by suppressing expression of peroxisome proliferator activator receptor gamma-coactivator 1α (PGC-1α). Cell Physiol Biochem 46(5):2165–2172

    Article  CAS  Google Scholar 

  • Kazani S, Sadeh J, Bunga S, Wechsler ME, Israel E (2011) Cysteinyl leukotriene antagonism inhibits bronchoconstriction in response to hypertonic saline inhalation in asthma. Respir Med 105(5):667–673

    Article  Google Scholar 

  • McGill JK, Beal MF (2006) PGC-1α, a new therapeutic target in Huntington’s disease? Cell 127(3):465–468

    Article  CAS  Google Scholar 

  • Nam HS, Izumchenko E, Dasgupta S, Hoque MO (2017) Mitochondria in chronic obstructive pulmonary disease and lung cancer: where are we now? Biomarkers Med 11(6):475–489

    Article  CAS  Google Scholar 

  • Nanjaiah H, Vallikannan B (2019) Lutein up-regulates the PGC-1α, NRF1 and TFAM expression by AMPK activation and down regulates ROS to maintain mtDNA integrity and mitochondrial biogenesis in hyperglycemic ARPE-19 cells and rat retina. Biotechnol Appl Biochem 66(6):999–1009

    Article  CAS  Google Scholar 

  • Niu Z, Tang J, Ren Y, Feng W (2018) Ropivacaine impairs mitochondrial biogenesis by reducing PGC-1α. Biochem Biophys Res Commun 504(2):513–518

    Article  CAS  Google Scholar 

  • Prakash YS, Pabelick CM, Sieck GC (2017) Mitochondrial dysfunction in airway disease. Chest 152(3):618–626

    Article  CAS  Google Scholar 

  • Rieger B, Thierbach S, Ommer M, Dienhart FSV, Fetzner S, Busch KB (2020) Pseudomonas Quinolone Signal molecule PQS behaves like a B Class inhibitor at the IQ site of mitochondrial complex I. FASEB Bioadv 2(3):188–202

    Article  CAS  Google Scholar 

  • Saito T, Ichikawa T, Fujino N, Numakura T, Sasaki Y, Itakura K, Yamada M, Sugiura H, Ichinose M. (2019) The Decrease of Mitochondrial Biogenesis Contributes Airway Epithelial Barrier Dysfunction in Asthma. InB62. ASTHMA MECHANISMS (pp. A3803-A3803). American Thoracic Society.

  • Torrie AM, Craig TJ (2016) Exercise-Induced Bronchoconstriction. InAllergy and Asthma. (pp.241–251). Springer, Cham.

  • Wang J, Jiao Y (2016) The Effect Of PGC-1α On Acute Lung Injury. InC67. ACUTE LUNG INJURY (pp. A5766-A5766). American Thoracic Society.

  • Wang H, Cheng Y, Liu Y, Shi J, Cheng Z (2019) Montelukast promotes mitochondrial biogenesis via CREB/PGC-1α in human bronchial epithelial cells. Artific Cells, Nanomed Biotechnol 47(1):4234–4239

    Article  CAS  Google Scholar 

  • Weng G, Zhou B, Liu T, Huang Z, Yang H (2019) Sitagliptin promotes mitochondrial biogenesis in human SH-SY5Y cells by increasing the expression of PGC-1α/NRF1/TFAM. IUBMB Life 71(10):1515–1521

    Article  CAS  Google Scholar 

  • Winnica DE, Bueno M, Sullivan M, Corey C, Mora AL, Stolz D, Shiva S, Holguin F (2016) C32 IMAGING INFLAMMATION IN THE LUNG: ultrastructural changes and mitochondrial dysfunction in primary human airway epithelial cells (hbecs) from subjects with asthma. Am J Respir Crit Care Med 193:1

    Article  Google Scholar 

  • Yamamoto T, Miyata J, Arita M, Fukunaga K, Kawana A (2019) Current state and future prospect of the therapeutic strategy targeting cysteinyl leukotriene metabolism in asthma. Respir Investig 57(6):534–543

    Article  Google Scholar 

  • Ye JX, Wang SS, Ge M, Wang DJ (2016) Suppression of endothelial PGC-1α is associated with hypoxia-induced endothelial dysfunction and provides a new therapeutic target in pulmonary arterial hypertension. Am J Physiol-Lung Cell Mol Physiol 310(11):L1233–L1242

    Article  Google Scholar 

  • Yue L, Yao H (2016) Mitochondrial dysfunction in inflammatory responses and cellular senescence: pathogenesis and pharmacological targets for chronic lung diseases. Br J Pharmacol 173(15):2305–2318

    Article  CAS  Google Scholar 

  • Zhang Y, Xu H (2016) Translational regulation of mitochondrial biogenesis. Biochem Soc Trans 44(6):1717–1724

    Article  CAS  Google Scholar 

  • Zhang L, Wang W, Zhu B, Wang X (2017) Epithelial mitochondrial dysfunction in lung disease. Adv Exp Med Biol 1038:201–217

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhang.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, P., Gong, F., Chang, L. et al. Zafirlukast promotes mitochondrial respiration by stimulating mitochondrial biogenesis in human bronchial epithelial cells. J Mol Histol 52, 643–650 (2021). https://doi.org/10.1007/s10735-021-09974-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-021-09974-0

Keywords

Navigation