Skip to main content
Log in

Phoenixin 20 promotes neuronal mitochondrial biogenesis via CREB–PGC-1α pathway

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Neurodegenerative disorders are dreadful diseases that affect millions of people worldwide. Mitochondrial dysfunction is closely associated with the development of neurodegenerative disorders. Phoenixin 20 is a newly discovered neuropeptide with a pleiotropic effect. This study showed that the presence of Phoenixin 20 promoted neuronal mitochondrial biogenesis in vitro. In cultured neuronal M17 cells, Phoenixin 20 increased the expression of mitochondrial regulators PGC-1α, NRF-1, and TFAM at both mRNA and protein levels. The treatment of Phoenixin 20 increased the ratio of mitochondrial vs nuclear DNA (mtDNA/nDNA) and the multiple mitochondrial gene expression as revealed by increasing mRNA expression of Tomm22, Timm50, Atp5d, Ndufs3, and protein expression of NDUFB8. At a cellular level, Phoenixin 20 promoted mitochondrial respiratory rate and cellular ATP production. Mechanistically, we found that Phoenixin 20 induced the phosphorylation of CREB, which suggests that Phoenixin 20 promoted the activation of the CREB pathway. The blockage of CREB by its selective inhibitor H89 prevented the effect of Phoenixin 20 on mitochondrial regulators and biogenesis. Moreover, the study showed that Phoenixin 20 induced the expression of its tentative receptor GPR173 at the mRNA and protein level, and the silence of GPR173 in neuronal cells ablated all its effect on mitochondrial regulation. Collectively, we showed that Phoenixin 20 promoted neuronal mitochondrial biogenesis via the regulation of CREB–PGC-1α pathway. This study revealed a new role and underlying mechanism of Phoenixin 20 in neuronal cells, suggesting it influences the therapeutic implication of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Belgacem YH, Borodinsky LN (2017) CREB at the crossroads of activity-dependent regulation of nervous system development and function. Adv Exp Med Biol 1015:19–39

    Article  Google Scholar 

  • Dugger BN, Dickson DW (2017) Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol 9(7):a028035

    Article  Google Scholar 

  • Gleyzer N, Vercauteren K, Scarpulla RC (2005) Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol 25:1354–1366

    Article  CAS  Google Scholar 

  • Golpich M, Amini E, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Ahmadiani A (2017) Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment. CNS Neurosci Ther 23:5–22

    Article  Google Scholar 

  • Hyder F, Rothman DL, Bennett MR (2013) Cortical energy demands of signaling and nonsignaling components in brain are conserved across mammalian species and activity levels. Proc Natl Acad Sci USA 110:3549–3554

    Article  CAS  Google Scholar 

  • Jiang H, Kang SU, Zhang S, Karuppagounder S, Xu J, Lee YK, Kang BG, Lee Y, Zhang J, Pletnikova O, Troncoso JC, Pirooznia S, Andrabi SA, Dawson VL, Dawson TH et al (2016) Adult conditional knockout of PGC-1α leads to loss of dopamine neurons. eNeuro. https://doi.org/10.1523/ENEURO.0183-16.2016

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson IP (2015) Age-related neurodegenerative disease research needs aging models. Front Aging Neurosci 7:168

    Article  Google Scholar 

  • Johri A, Beal MF (2012) Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther 342:619–630

    Article  CAS  Google Scholar 

  • Jornayvaz FR, Shulman GI (2010) Regulation of mitochondrial biogenesis. Essays Biochem 47:69–84

    Article  CAS  Google Scholar 

  • Kang I, Chu CT, Kaufman BA (2018) The mitochondrial transcription factor TFAM in neurodegeneration: emerging evidence and mechanisms. FEBS Lett 592:793–811

    Article  CAS  Google Scholar 

  • Kelly DP, Scarpulla RC (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 6:357–368

    Article  Google Scholar 

  • Larco DO, Semsarzadeh NN, Cho-Clark M, Mani SK, Wu TJ (2013) β-Arrestin 2 is a mediator of GnRH-(1–5) signaling in immortalized GnRH neurons. Endocrinology 154:4726–4736

    Article  CAS  Google Scholar 

  • Li PA, Hou X, Hao S (2017) Mitochondrial biogenesis in neurodegeneration. J Neurosci Res 95:2025–2029

    Article  CAS  Google Scholar 

  • Matsumoto M, Saito T, Takasaki J, Kamohara M, Sugimoto T, Kobayashi M, Tadokoro M, Matsumoto S, Ohishi T, Furuichi K (2020) An evolutionarily conserved G-protein coupled receptor family, SREB, expressed in the central nervous system. Biochem Biophys Res Commun 272:576–582

    Article  Google Scholar 

  • Mcilwraith EK, Belsham DD (2018) Phoenixin: uncovering its receptor, signaling and functions. Acta Pharmacol Sin 39:774–778

    Article  CAS  Google Scholar 

  • Moreira PI, Zhu X, Wang X, Lee HG, Nunomura A, Petersen RB, Perry G, Smith MA (2010) Mitochondria: a therapeutic target in neurodegeneration. Biochim Biophys Acta 1802:212–220

    Article  CAS  Google Scholar 

  • Nikoletopoulou V, Tavernarakis N (2014) Mitochondrial biogenesis and dynamics in neurodegeneration: a causative relationship. Neurochem Res 39:542–545

    Article  CAS  Google Scholar 

  • Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, O'Malley B, Spiegelman BM (1999) Activation of PPARgamma coactivator-1 through transcription factor docking. Science 286:1368–1371

    Article  CAS  Google Scholar 

  • Raichle ME, Gusnard DA (2002) Appraising the brain's energy budget. PNAS 99:10237–10239

    Article  CAS  Google Scholar 

  • Schalla MA, Stengel A (2018) Phoenixin-A pleiotropic gut-brain peptide. Int J Mol Sci 19(6):E1726

    Article  Google Scholar 

  • Stein LM, Tullock CW, Mathews SK, Garcia-Galiano D, Elias CF, Samson WK, Yosten GL (2016a) Hypothalamic action of phoenixin to control reproductive hormone secretion in females: importance of the orphan G protein-coupled receptor Gpr173. Am J Physiol Regul Integr Comp Physiol 311:R489–496

    Article  Google Scholar 

  • Stein LM, Tullock CW, Mathews SK, Garcia-Galiano D, Elias CF, Samson WK, Yosten GL (2016b) Hypothalamic action of phoenixin to control reproductive hormone secretion in females: importance of the orphan G protein-coupled receptor Gpr173. Am J Physiol Regul Integr Comp Physiol 311:R489–R496

    Article  Google Scholar 

  • Taherzadeh-Fard E, Saft C, Akkad DA, Wieczorek S, Haghikia A, Chan A, Epplen JT, Arning L (2011) PGC-1alpha downstream transcription factors NRF-1 and TFAM are genetic modifiers of Huntington disease. Mol Neurodegener 26:32

    Article  Google Scholar 

  • Treen AK, Luo V, Belsham D (2016) Phoenixin activates immortalized GnRH and kisspeptin neurons through the novel receptor GPR173. Mol Endocrinol 30:872–888

    Article  CAS  Google Scholar 

  • Uchiumi T, Kang D (2012) The role of TFAM-associated proteins in mitochondrial RNA metabolism. Biochim Biophys Acta 1820:565–570

    Article  CAS  Google Scholar 

  • Yanai T, Kurosawa A, Nikaido Y, Nakajima N, Saito T, Osada H, Konno A, Hirai H, Takeda S (2016) Identification and molecular docking studies for novel inverse agonists of SREB, super conserved receptor expressed in brain. Genes Cells 21:717–727

    Article  CAS  Google Scholar 

  • Yosten GL, Lyu RM, Hsueh AJ, Avsian-Kretchmer O, Chang JK, Tullock CW, Dun SL, Dun N, Samson WK (2013) A novel reproductive peptide, phoenixin. J Neuroendocrinol 25:206–215

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Lv, Y., Liu, J. et al. Phoenixin 20 promotes neuronal mitochondrial biogenesis via CREB–PGC-1α pathway. J Mol Hist 51, 173–181 (2020). https://doi.org/10.1007/s10735-020-09867-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-020-09867-8

Keywords

Navigation