Skip to main content
Log in

Monitoring of high-yield and periodical processes in health care

  • Published:
Health Care Management Science Aims and scope Submit manuscript

Abstract

Statistical control charts have found valuable applications in health care, having been largely adopted from operations research in manufacturing. However, the most common types are not best-suited to monitor high-yield processes (outcomes comprising true/false fractions, ‘near-zero’) and periodical processes (characterized by sequences of single populations of finite sizes), but rather to monitor variable vital signs levels and, to a lesser degree, service performance indicators. We discuss control charts that are most suitable for fraction non-conforming measurements. We focus particularly on high-yield and periodical processes, i.e. range in which out-of-control conditions are expected and should be identified. For these conditions, we discuss control charts based on the family of hypergeometric distributions, explaining and comparing their application to more traditional alternatives with two health care case studies. We demonstrate that hypergeometric-type control charts provide higher sensitivity in timely identification of changing rare event fractions and are well-suited for monitoring of periodical processes, while remaining more resistant to false alarms, versus their alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ALI:

average length of inspection

ARL:

average run length

B:

Binomial

CCC:

cumulative count of conforming

CL:

center line

G:

Geometric

H:

Hypergeometric

LCL:

lower control limit

NB:

Negative binomial

NH:

Negative hypergeometric

P:

probability control limits

S:

Shewhart-type control limits

TBE:

time between events

UCL:

upper control limit

References

  1. Acosta-Mejia C. A. (2012) Two-sided charts for monitoring nonconforming parts per million. Qual. Eng. 25(1):34–45

    Google Scholar 

  2. Adab P., Rouse A., Mohammed M. A. (2002) Performance league tables: the NHS deserves better. BMJ 324:95–98

    Google Scholar 

  3. Albers W. (2010) The optimal choice of negative binomial charts for monitoring high-quality processes. J. Stat. Plan. Inference 140(1):214–225

    Google Scholar 

  4. Benneyan J. C. (1998a) Statistical quality control methods in infection control and hospital epidemiology, Part I: Introduction and basic theory. Infect. Control Hosp. Epidemiol. 19(3):194–214

    Google Scholar 

  5. Benneyan J. C. (1998b) Statistical quality control methods in infection control and hospital epidemiology, Part II: Chart use, statistical properties, and research issues. Infect. Control Hosp. Epidemiol. 19(4):265–283

    Google Scholar 

  6. Benneyan J. C. (2001a) Number-between g-type statistical quality control charts for monitoring adverse events. Health Care Manag. Sci. 4(4):305–318

    Google Scholar 

  7. Benneyan J. C. (2001b) Performance of number-between g-type statistical control charts for monitoring adverse events. Health Care Manag. Sci. 4(4):319–336

    Google Scholar 

  8. Benneyan J. C., Lloyd R. C., Plsek P. E. (2003) Statistical process control as a tool for research and healthcare improvement. Qual. & Safety in Health Care 12(6):458–464

    Google Scholar 

  9. Bourke P. D. (1991) Detecting a shift in fraction nonconforming using run-length control charts with 100% inspection. J. Qual. Technol. 23(3):225–238

    Google Scholar 

  10. Calvin T. W. (1983) Quality control techniques for zero-defects. IEEE Trans. Comp., Hybrids, Manufac. Tech. 6(3):323–328

    Google Scholar 

  11. Carey R. G. (2003) Improving healthcare with control charts: Basic and Advanced SPC Methods and Case Studies. ASQ Quality Press, Milwaukee

    Google Scholar 

  12. Chan L. Y., Lai C. D., Xie M., Goh T. N. (2003) A two-stage decision procedure for monitoring processes with low fraction nonconforming. Eur. J. Oper. Res. 150(2):420–436

    Google Scholar 

  13. Chan L. Y., Lin D. K. J., Xie M., Goh T. N. (2002) Cumulative probability control charts for geometric and exponential process characteristics. Int. J. Prod. Res. 40(1):133–150

    Google Scholar 

  14. Chukhrova N., Johannssen A. (2019a) Improved control charts for fraction non-conforming based on hypergeometric distribution. Comput. Ind. Eng. 128:795–806

    Google Scholar 

  15. Chukhrova N., Johannssen A. (2019b) Hypergeometric p-chart with dynamic probability control limits for monitoring processes with variable sample and population sizes. Comput. Ind. Eng. 136:681–701

    Google Scholar 

  16. Chukhrova N., Johannssen A. (2019c) Improved binomial and poisson approximations to the type-A operating characteristic function. Int. J. Qual. Reliab. Manag. 36(4):620–652

    Google Scholar 

  17. Das N. (2003) Study on implementing control charts assuming negative binomial distribution with varying sample size in a software industry. Software Quality Professional 6(1):38–39

    Google Scholar 

  18. Bucchianico A., Mooiweer G. D., Moonen E. J. D. (2005) Monitoring infrequent failures of high-volume production processes. Qual. Reliab. Eng. Int. 21(5):521–528

    Google Scholar 

  19. Dover D. C., Schopflocher D. P. (2011) Using funnel plots in public health surveillance. Popul. Health Metrics 9(58):1–12

    Google Scholar 

  20. Duclos A., Voirin N. (2010) The p-control chart: a tool for care improvement. Int. J. Qual. Health Care 22(5):402–407

    Google Scholar 

  21. Gan F. F., Yuen J. S., Knoth S. (2020) Quicker detection risk-adjusted cumulative sum charting procedures. Stat. Med. 39(7):875–889

    Google Scholar 

  22. Goh T. N. (1987) A control chart for very high yield processes. Qual. Assur. London 13(1):18–22

    Google Scholar 

  23. Grigg O. A., Farewell V. T. (2004a) An overview of risk-adjusted charts. J Royal Stat Soc. Series A (Statistics in Society) 167(3):523–539

    Google Scholar 

  24. Grigg O. A., Farewell V. T. (2004b) A risk-adjusted sets method for monitoring adverse medical outcomes. Stat. Med. 23(10):1593–1602

    Google Scholar 

  25. Grigg O. A., Farewell V. T., Spiegelhalter D. J. (2003) Use of risk-adjusted CUSUM and RSPRT charts for monitoring in medical contexts. Stat. Methods Med. Res. 12(2):147–170

    Google Scholar 

  26. Hart M. K., Hart R. F. (2002) Statistical process control for health care Duxbury, Pacific Grove, CA

  27. Hart M. K., Hart R. F., Schmaltz S. (2007) Control limits for p control charts with small subgroup sizes. Qual. Manag. Health Care 16(2):123–129

    Google Scholar 

  28. Iezzoni L. (2012) Risk adjustment for measuring healthcare outcomes, 4th edn. Health Administration Press, Chigago

    Google Scholar 

  29. Jakobson T., Karjagin J., Vipp L., Padar M., Parik A. -H., Starkopf L., Kern H., Tamik O., Starkopf J. (2014) Postoperative complications and mortality after major gastrointestinal surgery. Medicina 50(2):111–117

    Google Scholar 

  30. Johannssen A., Chukhrova N., Celano G., Castagliola P (2020) Control charts for monitoring the fraction nonconforming in finite horizon production processes. Working Paper

  31. Johnson N. L., Kemp A. W., Kotz S. (2005) Univariate discrete distributions, 3rd edn. Wiley, Hoboken

    Google Scholar 

  32. Kaminsky F. C., Benneyan J. C., Davis R. D., Burke R. J. (1992) Statistical control charts based on a geometric distribution. J. Qual. Technol. 24(2):63–69

    Google Scholar 

  33. Knoth S., Wittenberg P., Gan F. F. (2019) Risk-adjusted CUSUM charts under model error. Stat. Med. 38(12):2206–2218

    Google Scholar 

  34. Lee K. Y., McGreevey C. (2002) Using control charts to assess performance measurement data. J. Qual. Improv. 28(2):90–101

    Google Scholar 

  35. Limaye S. S., Mastrangelo C. M., Zerr D. M. (2008) A case study in monitoring hospital-associated infections with count control charts. Qual. Eng. 20(4):404–413

    Google Scholar 

  36. Mohammed M. A., Worthington P., Woodall W. H. (2008) Plotting basic control charts: tutorial notes for healthcare practitioners. Quality and Safety in Health Care 17(2):137–145

    Google Scholar 

  37. Montgomery D. C. (2012) Statistical quality control: A modern introduction, 7th edn. Wiley, New York

    Google Scholar 

  38. Nelson L. S. (1994) A control chart for parts-per-million nonconforming items. J. Qual. Technol. 26(3):239–240

    Google Scholar 

  39. Ohta H., Kusakawa E., Rahim A. (2001) A CCC-r chart for high-yield processes. Qual. Reliab. Eng. Int. 17(6):439–446

    Google Scholar 

  40. Rogers C. A., Reeves B. C., Caputo M., Ganesh J. S., Bonser R. S., Angelini G. D. (2004) Control chart methods for monitoring cardiac surgical performance and their interpretation. J. Thorac. Cardiov. Sur. 128(6):811–819

    Google Scholar 

  41. Ryan T. P. (2011) Statistical methods for quality improvement, 3rd edn. Wiley, New York

    Google Scholar 

  42. Schrem H., Schneider V., Kurok M., Goldis A., Dreier M., Kaltenborn A., Gwinner W., Barthold M., Liebeneier J., Winny M., Klempnauer J., Kleine M. (2016) Independent pre-transplant recipient cancer risk factors after kidney transplantation and the utility of g-chart analysis for clinical process control. PLoS ONE 11(7):1–17

    Google Scholar 

  43. Sheaffer R. L., Leavenworth R. S. (1976) The negative binomial model for counts in units of varying size. J. Qual. Technol. 8(3):158–163

    Google Scholar 

  44. Sismanidis C., Bland M., Poloniecki J. (2003) Properties of the Cumulative Risk-Adjusted Mortality (CRAM) chart, including the number of deaths before a doubling of the death rate is detected. Med. Decis. Making 23(3):242–251

    Google Scholar 

  45. Sonesson C., Bock D. (2003) A review and discussion of prospective statistical surveillance in public health. J. R. Stat. Soc. A. Stat. 166(1):5–21

    Google Scholar 

  46. Spiegelhalter D. (2002) Letter to the editor: Funnel plots for institutional comparison. Qual. and Safety in Health Care 11:390–391

    Google Scholar 

  47. Spiegelhalter D. (2005) Funnel Plots for comparing institutional performance. Stat. Med. 24 (8):1185–1202

    Google Scholar 

  48. Tennant R., Mohammed M. A., Coleman J. A., Martin U. (2007) Monitoring patients using control charts: a systematic review. Int. J. Qual. Health Care 19(4):187–194

    Google Scholar 

  49. The Minitab Blog (2017) Monitoring Rare Events with G Charts. online: blog.minitab.com

  50. Thor J., Lundberg J., Ask J., Olsson J., Carli C., Härenstam KP, Brommels M (2007) Application of statistical process control in healthcare improvement: systematic review. Qual. & Safety in Health Care 16(5):387–399

    Google Scholar 

  51. Verburg I. W. M., Holman R., Peek N., Abu-Hanna A., de Keizer N. F. (2018) Guidelines on constructing funnel plots for quality indicators: A case study on mortality in intensive care unit patients. Stat. Methods Med. Res. 27(11):3350–3366

    Google Scholar 

  52. Walker N., Van Woerden H., Kiparoglou V., Yang Y. (2016) Identifying seasonal and temporal trends in the pressures experienced by hospitals related to unscheduled care. BMC Health Serv. Res. 16:307

    Google Scholar 

  53. Wheeler D. J. (2004) Advanced topics in statistical process control: The power of Shewhart’s charts, 2nd edn. SPC Press, Knoxville

    Google Scholar 

  54. Wittenberg P., Gan F. F., Knoth S. (2018) A simple signaling rule for variable life-adjusted display derived from an equivalent risk-adjusted CUSUM chart. Stat. Med. 37(16):2455–2473

    Google Scholar 

  55. Woodall W. H. (2006) The use of control charts in health-care and public-health surveillance. J. Qual. Technol. 38(2):89–104

    Google Scholar 

  56. Xie M., Goh T. N. (1992) Some procedures for decision making in controlling high yield processes. Qual. Reliab. Eng. Int. 8(4):355–360

    Google Scholar 

  57. Xie M., Goh T. N., Kuralmani V. (2002) Statistical models and control charts for high-quality processes. Kluwer Academic Publication, Massachusetts

    Google Scholar 

  58. Yang Z., Xie M., Kuralmani V., Tsui K. -L. (2002) On the performance of geometric charts with estimated control limits. J. Qual. Technol. 34(4):448–458

    Google Scholar 

  59. Zhang L., Govindaraju K., Bebbington M., Lai C. D. (2004) On the statistical design of geometric control charts. Quality Technology & Quantitative Management 1(2):233–243

    Google Scholar 

  60. Zhang X., Woodall W. H. (2015) Dynamic probability control limits for risk-adjusted Bernoulli CUSUM charts. Stat. Med. 34(25):3336–3348

    Google Scholar 

  61. Zhang X., Woodall W. H. (2017a) Reduction of the effect of estimation error on in-control performance for risk-adjusted Bernoulli CUSUM chart with dynamic probability control limits. Qual. Reliab. Eng. Int. 33(2):381–386

    Google Scholar 

  62. Zhang X., Woodall W. H. (2017b) Dynamic probability control limits for lower and two-sided risk-adjusted Bernoulli CUSUM charts. Qual. Reliab. Eng. Int. 33(3):607–616

    Google Scholar 

  63. Zhang X., Loda J. B., Woodall W. H. (2017) Dynamic probability control limits for risk-adjusted CUSUM Charts based on multiresponses. Stat. Med. 36(16):2547–2558

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Gregory Zaric and three anonymous reviewers for their valuable feedback and suggestions, which were very important and helpful to significantly improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Johannssen.

Ethics declarations

Conflict of interests

We have no conflicts of interest to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chukhrova, N., Johannssen, A. Monitoring of high-yield and periodical processes in health care. Health Care Manag Sci 23, 619–639 (2020). https://doi.org/10.1007/s10729-020-09514-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10729-020-09514-4

Keywords

Navigation