Skip to main content
Log in

Designing schedule configuration of a hybrid appointment system for a two-stage outpatient clinic with multiple servers

  • Published:
Health Care Management Science Aims and scope Submit manuscript

Abstract

Even though several clinics serve patients in more than one stage (e.g., visit nurse and then visit doctor) and employ multiple providers in each stage, most of the previous work on appointment system design considers a simplified single-stage single-server clinic. Motivated by a real-life clinic setting, this paper aims to determine the schedule configuration of a hybrid appointment system (i.e., the number of pre-booking and same-day time slots reserved for a physician along with their positions in the schedule) for a two-stage multi-server clinic. A stochastic optimization model is developed to obtain a schedule configuration that minimizes the expected total cost - a weighted sum of excessive patient waiting time, resource idle time, resource overtime, and denied appointment requests. Owing to its computational complexity, we estimate the expected total cost using the sample average approximation method. The proposed model is verified and validated using small test instances and subject matter experts. A case study of a family medicine clinic in Pennsylvania is used to illustrate the proposed approach. The schedule generated by the proposed model results in a significantly lower expected cost compared to the approximated single-stage system’s best schedule configuration and clinic’s existing configuration. Further, sensitivity analysis is conducted to assess the impacts of no-show rate, service time variation, and cost ratios on the schedule configuration. Our findings demonstrate that the schedule configuration is sensitive to changes in the average no-show rate and cost ratios but is not significantly impacted by service time variation. Several managerial insights are also drawn from our analysis. Finally, we provide directions for future research that also highlights the potential to use the revenue management approach to address the problem under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Analysis of American Hospital Association Annual Survey data for community hospitals. (2016) US Census Bureau: National and State Population Estimates, https://www.census.gov/programs-surveys/popest/data/data-sets.2016.html

  2. Collins S, Gunja M, Beutel S (2015) New U.S. Census Data Show the Number of Uninsured Americans Dropped by 8.8 Million. New U.S. Census Data Show the Number of Uninsured Americans Dropped by 8.8 Million, Commonwealth Fund, 16 Sept. 2015, http://www.commonwealthfund.org/blog/2015/new-us-census-data-show-numberuninsured-americans-dropped-88-million

  3. Colwill JM, Cultice JM, Kruse RL (2008) Will generalist physician supply meet demands of an increasing and aging population? Projected shortages could be alleviated if the United States produced four additional generalist graduates in each family and internal medicine residency program each year. Health Aff 27(Suppl1):w232–w241

    Article  Google Scholar 

  4. Hawkins M, et al. (2017) Survey of physician appointment wait times, pp 1-17. Irving, TX [online] https://www.merritthawkins.com/uploadedFiles/MerrittHawkins/Content/Pdf/mha2017waittimesurveyPDF.pdf (accessed 15 May 2018)

  5. Kopach R, DeLaurentis PC, Lawley M, Muthuraman K, Ozsen L, Rardin R, Wan H, Intrevado P, Qu X, Willis D (2007) Effects of clinical characteristics on successful open access scheduling. Health Care Manag Sci 10(2):111–124

    Article  Google Scholar 

  6. Glowacka KJ, Henry RM, May JH (2009) A hybrid data mining/simulation approach for modeling outpatient no-shows in clinic scheduling. J Oper Res Soc 60(8):1056–1068

    Article  Google Scholar 

  7. Lee S, Yih Y (2010) Analysis of an open access scheduling system in outpatient clinics: a simulation study. Simulation 86(8-9):503–518

    Article  Google Scholar 

  8. Erdogan SA, Gose A, Denton B (2015) Online appointment sequencing and scheduling. IIE Trans 47 (11):1267–1286

    Article  Google Scholar 

  9. Singer IA, Regenstein M (2003) Advanced access: ambulatory care redesign and the nation’s safety net. National Association of Public Hospitals and Health Systems

  10. Hoseini B, Cai W, Abdel-Malek L (2018) A carve-out model for primary care appointment scheduling with same-day requests and no-shows. Oper Res Health Care 16:41–58

    Article  Google Scholar 

  11. Srinivas S, Khasawneh MT (2017) Design and analysis of a hybrid appointment system: an optimization approach. Int J Oper Res 29(3):376–399

    Article  Google Scholar 

  12. Kortbeek N, Zonderland ME, Braaksma A, Vliegen IM, Boucherie RJ, Lit- vak N, Hans EW (2014) Designing cyclic appointment schedules for outpatient clinics with scheduled and unscheduled patient arrivals. Perform Eval 80:5–26

    Article  Google Scholar 

  13. Yan C, Tang J, Jiang B, Fung RY (2015) Sequential appointment scheduling considering patient choice and service fairness. Int J Prod Res 53(24):7376–7395

    Article  Google Scholar 

  14. Cayirli T, Veral E (2003) Outpatient scheduling in health care: a review of literature. Prod Oper Manag 12(4):519–549

    Article  Google Scholar 

  15. Srinivas S, Ravindran AR (2017) Systematic review of opportunities to improve outpatient appointment systems. In: IIE annual conference. Proceedings. Institute of Industrial and Systems Engineers (IISE), pp 1697–1702

  16. Gupta D, Denton B (2008) Appointment scheduling in health care: challenges and opportunities. IIE Trans 40(9):800–819

    Article  Google Scholar 

  17. Qu X, Shi J (2011) Modeling the effect of patient choice on the performance of open access scheduling. Int J Prod Econ 129(2):314–327

    Article  Google Scholar 

  18. Peng Y, Qu X, Shi J (2014) A hybrid simulation and genetic algorithm approach to determine the optimal scheduling templates for open access clinics admitting walk-in patients. Comput Indus Eng 72:282–296

    Article  Google Scholar 

  19. Qu X, Rardin RL, Williams JAS, Willis DR (2007) Matching daily healthcare provider capacity to demand in advanced access scheduling systems. Eur J Oper Res 183(2):812–826

    Article  Google Scholar 

  20. Liu N, Ziya S, Kulkarni VG (2010) Dynamic scheduling of outpatient appointments under patient no-shows and cancellations. Manuf Serv Oper Manag 12(2):347–364

    Article  Google Scholar 

  21. Gupta D, Wang L (2008) Revenue management for a primary-care clinic in the presence of patient choice. Oper Res 56(3):576–592

    Article  Google Scholar 

  22. Feldman J, Liu N, Topaloglu H, Ziya S (2014) Appointment scheduling under patient preference and no-show behavior. Oper Res 62(4):794–811

    Article  Google Scholar 

  23. Muthuraman K, Lawley M (2008) A stochastic overbooking model for outpatient clinical scheduling with no-shows. IIE Trans 40(9):820–837

    Article  Google Scholar 

  24. Chen RR, Robinson LW (2014) Sequencing and scheduling appointments with potential call-in patients. Prod Oper Manag 23(9):1522–1538

    Article  Google Scholar 

  25. Ahmadi-Javid A, Jalali Z, Klassen KJ (2017) Outpatient appointment systems in healthcare: a review of optimization studies. Eur J Oper Res 258(1):3–34

    Article  Google Scholar 

  26. Pérez E, Ntaimo L, Malavé CO, Bailey C, McCormack P (2013) Stochastic online appointment scheduling of multi-step sequential procedures in nuclear medicine. Health Care Manag Sci 16(4):281–299

    Article  Google Scholar 

  27. Troy P, Lahrichi N, Porubska D, Rosenberg L (2019) Fine-grained simulation optimization for the design and operations of a multi-activity clinic. Flex Serv Manuf J, 1–30

  28. Klassen KJ, Yoogalingam R (2018) Appointment scheduling in multi-stage outpatient clinics. Health Care Manag Sci, 1–16

  29. Srinivas S, Ravindran AR (2018) Optimizing outpatient appointment system using machine learning algorithms and scheduling rules: a prescriptive analytics framework. Expert Syst Appl 102:245–261

    Article  Google Scholar 

  30. Srinivas S (2016) Evaluating the impact of nature of patient flow and patient availability on the performance of appointment scheduling rules in outpatient clinics. Int J Oper Quant Manag 22(2):93–118

    Google Scholar 

  31. Shapiro A, Philpott A (2007) A tutorial on stochastic programming. Manuscript

  32. Higle JL (2005) Stochastic programming: optimization when uncertainty matters. In: Emerging theory, methods, and applications, pp 30–53. INFORMS

  33. Teter MD, Newman AM, Weiss M (2016) Consistent notation for presenting complex optimization models in technical writing. Surveys Oper Res Manag Sci 21(1):1–17

    Google Scholar 

  34. Kleywegt AJ, Shapiro A, Homem-de-Mello T (2002) The sample average approximation method for stochastic discrete optimization. SIAM J Optim 12(2):479–502

    Article  Google Scholar 

  35. Schütz P, Tomasgard A, Ahmed S (2009) Supply chain design under uncertainty using sample average approximation and dual decomposition. Eur J Oper Res 199(2):409–419

    Article  Google Scholar 

  36. Pagnoncelli BK, Ahmed S, Shapiro A (2009) Sample average approximation method for chance constrained programming: theory and applications. J Optim Theory Appl 142(2):399–416

    Article  Google Scholar 

  37. Robinson S (1997) Simulation model verification and validation: increasing the users’ confidence. In: Andradóttir S, Healey KJ, Withers DH, Nelson BL (eds) Proceedings of the 1997 winter simulation conference

  38. Darivemula S, Huppertz J, Rosenbaum E (2016) Decreasing wait times in a family medicine clinic – a creative approach. J New York State Acad Family Physicians 5(1):35–38

    Google Scholar 

  39. US Department of Commerce (2018) U.S. Census Bureau. Retrieved from www.census.gov/quickfacts/fact/table/elizabethtownboroughpennsylvania/INC110217

  40. Office of the Federal Register (2019) Code of federal regulations. Retrieved from https://www.ecfr.gov/

  41. Olds DM, Clarke SP (2010) The effect of work hours on adverse events and errors in health care. J Safety Res 41(2):153–162

    Article  Google Scholar 

  42. Stimpfel AW, Sloane DM, Aiken LH (2012) The longer the shifts for hospital nurses, the higher the levels of burnout and patient dissatisfaction. Health Aff 31(11):2501–2509

    Article  Google Scholar 

  43. Bradley S, Hax A, Magnanti T (1977) Applied mathematical programming. Addison-Wesley, Reading, pp 278–279

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the management, physicians, and staff at the family medicine clinic in central Pennsylvania, USA, for sharing the data required to test the proposed models, and for providing valuable comments and inputs during model development. The authors are grateful to the entire review team for their valuable feedback that helped us improve our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharan Srinivas.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: linearization techniques

In this section, three different linearization techniques are proposed to transform the non-linear constraints to equivalent linear constraints. These linearization techniques are used to avoid non-linearity and formulate stochastic MILP model for designing the hybrid appointment system.

1.1 A.1 Linearization technique - 1

To illustrate Linearization Technique - 1, let us consider the non-negative continuous decision variables, y and xj, where j = 1, 2..., n. In addition, let us consider the following binary decision variables, \({{\Delta }_{i}^{j}}\) where j = 1, 2,..., n and i = 1, 2,..., Ij. If the optimization model seeks to minimizey and if y is equal to the maximum of n non-linear terms, where each non-linear term is the product of one continuous variable and one or more binary decision variables as shown in constraint (37), then the non-linear constraint can be linearized by introducing a binary variable 𝜃j for each xj as shown in Eqs. 3844

$$ \begin{array}{@{}rcl@{}} \text{Non-Linear Constraint:} \displaystyle y = \max\Big(x_{1} \times \prod\limits_{i=1}^{I_{1}} {{\Delta}_{i}^{1}}, x_{2} \times \prod\limits_{i=1}^{I_{2}} {{\Delta}_{i}^{2}}, ..., x_{n} \times \prod\limits_{i=1}^{I_{n}} {{\Delta}_{i}^{n}} \Big) \end{array} $$
(37)
$$ \begin{array}{@{}rcl@{}} \text{Equivalent Linear Constraints:}&& \displaystyle y \geq x_{1} - M (I_{1} - \sum\limits_{i=1}^{I_{1}} {{\Delta}_{i}^{1}}) \end{array} $$
(38)
$$ \begin{array}{@{}rcl@{}} &&\displaystyle y \geq x_{2} - M (I_{2} - \sum\limits_{i=1}^{I_{2}} {{\Delta}_{i}^{2}}) \end{array} $$
(39)
$$ \begin{array}{@{}rcl@{}} && \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \vdots\\ & & \displaystyle y \geq x_{n} - M (I_{n} - \sum\limits_{i=1}^{I_{n}} {{\Delta}_{i}^{n}}) \end{array} $$
(40)
$$ \begin{array}{@{}rcl@{}} && \displaystyle y \leq x_{1} + M (1 - \theta^{1}) \end{array} $$
(41)
$$ \begin{array}{@{}rcl@{}} && \displaystyle y \leq x_{2} + M (1 - \theta^{2}) \end{array} $$
(42)
$$ \begin{array}{@{}rcl@{}} & & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \vdots\\ & & \displaystyle y \leq x_{n} + M (1 - \theta^{n}) \end{array} $$
(43)
$$ \begin{array}{@{}rcl@{}} & & \displaystyle \sum\limits_{j=1}^{n} \theta^{j} = 1 \end{array} $$
(44)

Constraints (38)–(40) becomes active if all the binary variable associated with that constraint is 1 and becomes inactive even if one of the binary variable is 0. For example, if all the \({{\Delta }_{i}^{1}}\)’s are 1, then Constraint (38) becomes yx1. Even if one of the \({{\Delta }_{i}^{1}}\)’s is equal to 0 then Constraint (38) becomes yx1M. Since M is a large positive number, the constraint is equivalent to y ≥−M and hence inactive. Constraint (44), forces exactly one of the 𝜃j, j = 1, 2,..., n to be active, which in turn forces one of the Constraints (41)–(43) to be active. To ensure feasibility, the 𝜃j, j = 1, 2,..., n corresponding to the maximum value of xjj = 1, 2..., n becomes 1, and ensures that y takes the maximum value of xj. This technique is used to linearize Eqs. (8), (11), (14), and (15).

1.2 A.2 Linearization technique - 2

To illustrate Linearization Technique - 2, let us consider two non-negative continuous decision variables, x and y and I binary decision variables, Δi, where i = 1, 2,..., I. If y is exactly equal to a non-linear term that is characterized by the product of x and Δi, where i = 1, 2,..., I as shown in Eq. 45, then it can be linearized using Eqs. 4648. The condition represented by this constraint is that the variable y = x, if all the Δi’s are equal to one and y = 0 even if one of the Δi is zero.

$$ \begin{array}{@{}rcl@{}} && \text{Non-Linear Constraint:} \displaystyle y = x \times \prod\limits_{i=1}^{I} {\Delta}_{i} \end{array} $$
(45)
$$ \begin{array}{@{}rcl@{}} && \text{Equivalent Linear Constraints:} \displaystyle y \geq x - M (I- \sum\limits_{i=1}^{I} {\Delta}_{i}) \end{array} $$
(46)
$$ \begin{array}{@{}rcl@{}} && \displaystyle y \leq x + M (I- \sum\limits_{i=1}^{I} {\Delta}_{i}) \end{array} $$
(47)
$$ \begin{array}{@{}rcl@{}} && \displaystyle y \leq M ({\Delta}_{i} )\qquad\qquad\forall i \end{array} $$
(48)

If all the Δi’s are equal to one, then Constraints (46) and (47) will force y to be exactly equal to x and Constraint (48) becomes inactive. However, even if one of the Δi’s is equal to 1, then Constraints (46) and (47) will become inactive and Constraint (48) will force y to be equal to 0. This technique is used to linearize Constraints (10), (72)–(74).

In Eq. 45, if we have greater than or equal to (i.e., i.e., \(y \geq x \times \prod \limits _{i=1}^{I} {\Delta }_{i}\)) instead of strict equality, then the non-linear constraint can be linearized just by using Constraint (46).

1.3 A.3 Linearization technique - 3

To illustrate Linearization Technique - 3, let us consider non-negative continuous decision variables, y and xi, where i = 1, 2..., I. If the objective function seeks to maximizey and if y is the maximum of xi, as shown in Eq. 49, then it can be linearized using Eqs. 4952. To linearize, we introduce a binary variable, δi, where i = 1, 2,..., I.

$$ \begin{array}{@{}rcl@{}} && \text{Non-Linear Constraint:} \displaystyle y = \max (x_{i} : i = 1,2,...,I) \end{array} $$
(49)
$$ \begin{array}{@{}rcl@{}} && \text{Equivalent Linear Constraints:} \displaystyle y \geq x_{i}\qquad\qquad\qquad\forall i \end{array} $$
(50)
$$ \begin{array}{@{}rcl@{}} && \displaystyle y \leq x_{i} + M(1-\delta_{i}) \qquad \qquad\forall i \end{array} $$
(51)
$$ \begin{array}{@{}rcl@{}} & & \displaystyle \sum\limits_{i=1}^{I} \delta_{i} = 1 \end{array} $$
(52)

Constraint (50) ensures that y is greater than or equal to the all the xi’s. In other words, y must be greater than or equal to maximum of xi, where i = 1, 2,..., I. Further, Constraint (51) is active (i.e., yxi) only when the binary variable, δi, is 1 and Constraint (52) forces exactly one of the binary variables (δi’s) to take a value 1. Therefore, to ensure feasibility of Constraints (50) and (52), Constraint (51) will be active only for the maximum of xi. Thus, Constraints (50) and (51) will force y to be exactly equal to the maximum of xi’s. In this research, we use this procedure to linearize Constraints (18) and (19)

Appendix B: Linearization of the stochastic model

In this section, we present the equivalent linear equations for the non-linear constraints in the stochastic MILP model discussed in Section 5. To linearize Constraints (18) and (19), we introduce two binary variables, namely, δsn and Δsd. The variable δsn takes the value 1 if \(L_{s-1,n}^{N}(\omega ) > b_{sn}^{N} \) and is 0 otherwise. Similarly, Δsd is 1 if \(L_{s-1,d}^{D}(\omega ) > b_{sd}^{D}\) and 0 otherwise. In addition, we also introduce the binary variables \(\theta ^{1}_{ptsn}(\omega )\), \(\theta ^{2}_{ptsn}(\omega )\), \(\theta ^{3}_{ptsn}(\omega )\), \(\theta ^{4}_{ptsn}(\omega )\), \({\Theta }^{1}_{ptsd}(\omega )\), \({\Theta }^{2}_{ptsd}(\omega )\), \({\Theta }^{3}_{ptsd}(\omega )\), \({\Theta }^{4}_{ptsd}(\omega )\), αptsn(ω), and βptsd(ω) to determine the exact maximum for start time and latest completion times of the resources.

$$ \begin{array}{@{}rcl@{}} \displaystyle S_{ptsn}^{N}(\omega) \geq C_{p't^{\prime},s-1,n}^{N}(\omega) - M\big(1 - \sum\limits_{d \in \mathcal{D}}^{} X_{ptsnd}(\omega)\big)\qquad\qquad\qquad\forall t,t^{\prime} \in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), p^{\prime} \in \mathcal{P}_{t^{\prime}}(\omega), s\in \mathcal{S} \ni s>1, n \in \mathcal{N} \end{array} $$
(53)
$$ \begin{array}{@{}rcl@{}} \displaystyle S_{ptsn}^{N}(\omega) \geq C_{p'tsn}^{N}(\omega) - M\big(1 - \sum\limits_{d \in \mathcal{D}}^{} X_{ptsnd}(\omega)\big)\qquad\qquad \forall t \in \mathcal{T}, p, p^{\prime} \in \mathcal{P}_{t}(\omega), p^{\prime} = 1,2,..,p-1, s \in \mathcal{S}, n \in \mathcal{N} \end{array} $$
(54)
$$ \begin{array}{@{}rcl@{}} \displaystyle S_{ptsn}^{N}(\omega) \geq b_{sn}^{N} - M\big(1 - \sum\limits_{d \in \mathcal{D}}^{} X_{ptsnd}(\omega)\big)\qquad\qquad\qquad\forall t\in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), s \in \mathcal{S}, n \in \mathcal{N} \end{array} $$
(55)
$$ \begin{array}{@{}rcl@{}} \displaystyle S_{ptsn}^{N}(\omega) \leq C_{p't^{\prime},s-1,n}^{N}(\omega) + M\big(1 - \theta^{1}_{ptsn}(\omega)\big)\qquad\qquad\qquad\forall t,t^{\prime} \in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), p^{\prime} \in \mathcal{P}_{t^{\prime}}(\omega), s\in \mathcal{S} \ni s>1, n \in \mathcal{N} \end{array} $$
(56)
$$ \begin{array}{@{}rcl@{}} \displaystyle S_{ptsn}^{N}(\omega) \leq C_{p'tsn}^{N}(\omega) + M\big(1 - \theta^{2}_{ptsn}(\omega)\big)\qquad\qquad \forall t \in \mathcal{T}, p, p^{\prime} \in \mathcal{P}_{t}(\omega), p^{\prime} = 1,2,..,p-1, s \in \mathcal{S}, n \in \mathcal{N} \end{array} $$
(57)
$$ \begin{array}{@{}rcl@{}} \displaystyle S_{ptsn}^{N}(\omega) \leq b_{sn}^{N} + M\big(1 - \theta^{3}_{ptsn}(\omega)\big)\qquad\qquad\qquad\forall t\in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), s \in \mathcal{S}, n \in \mathcal{N} \end{array} $$
(58)
$$ \begin{array}{@{}rcl@{}} \displaystyle \theta^{1}_{ptsd}(\omega)+\theta^{2}_{ptsd}(\omega)+\theta^{3}_{ptsd}(\omega)+\theta^{4}_{ptsn}(\omega) = \sum\limits_{n \in \mathcal{D}}^{} X_{ptsnd}(\omega)\qquad\qquad\qquad\forall t\in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), s \in \mathcal{S}, d \in \mathcal{D} \end{array} $$
(59)
$$ \begin{array}{@{}rcl@{}} \displaystyle C_{ptsn}^{N}(\omega) \leq S_{ptsn}^{N}(\omega) + \eta_{pt}(\omega) \times (1 - \sigma_{pt}(\omega)) + M\big(1 - \sum\limits_{d \in \mathcal{D}}^{} X_{ptsnd}(\omega)\big) \qquad\qquad\qquad\forall t\in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), s \in \mathcal{S}, n \in \mathcal{N} \end{array} $$
(60)
$$ \begin{array}{@{}rcl@{}} \displaystyle C_{ptsn}^{N}(\omega) \geq S_{ptsn}^{N}(\omega) + \eta_{pt}(\omega) \times (1-\sigma_{pt}(\omega)) - M\big(1 - \sum\limits_{d \in \mathcal{D}}^{} X_{ptsnd}(\omega)\big) \qquad\qquad\qquad\forall t\in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), s \in \mathcal{S}, n \in \mathcal{N} \end{array} $$
(61)
$$ \begin{array}{@{}rcl@{}} \displaystyle C_{ptsn}^{N}(\omega) \leq M\sum\limits_{d \in \mathcal{D}}^{} X_{ptsnd}(\omega)\qquad\qquad\qquad\forall t\in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), s \in \mathcal{S}, n \in \mathcal{N} \end{array} $$
(62)
$$ \begin{array}{@{}rcl@{}} \displaystyle S_{ptsd}^{D}(\omega) \geq C_{p't^{\prime},s-1,d}^{D}(\omega) - M\big(1 - \sum\limits_{n \in \mathcal{N}}^{} X_{ptsnd}(\omega)\big)\qquad\qquad\qquad\forall t,t^{\prime}\in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), p^{\prime} \in \mathcal{P}_{t^{\prime}}(\omega), s \in \mathcal{S} \ni s > 1, d \in \mathcal{D} \end{array} $$
(63)
$$ \begin{array}{@{}rcl@{}} \displaystyle S_{ptsd}^{D}(\omega) \geq C_{p'tsd}^{D}(\omega) - M\big(1 - \sum\limits_{n \in \mathcal{N}}^{} X_{ptsnd}(\omega)\big)\qquad\qquad\qquad\forall t\in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), p^{\prime} = 1,2,..,p-1, s \in \mathcal{S}, d \in \mathcal{D} \end{array} $$
(64)
$$ \begin{array}{@{}rcl@{}} \displaystyle S_{ptsd}^{D}(\omega) \geq \sum\limits_{n \in \mathcal{N}}^{} C_{ptsn}^{N}(\omega) - M\big(1 - \sum\limits_{n \in \mathcal{N}}^{} X_{ptsnd}(\omega)\big)\qquad\qquad\qquad\forall t \in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), s \in \mathcal{S}, d \in \mathcal{D} \end{array} $$
(65)
$$ \begin{array}{@{}rcl@{}} \displaystyle S_{ptsd}^{D}(\omega) \geq PAT_{sd}^{B} - M\big(1 - \sum\limits_{n \in \mathcal{N}}^{} X_{ptsnd}(\omega)\big)\qquad\qquad\qquad\forall t\in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), s \in \mathcal{S}, d \in \mathcal{D} \end{array} $$
(66)
$$ \begin{array}{@{}rcl@{}} \displaystyle S_{ptsd}^{D}(\omega) \leq C_{p't^{\prime},s-1,d}^{D}(\omega) + M\big(1 - {\Theta}^{1}_{ptsd}(\omega)\big)\qquad\qquad\qquad\forall t,t^{\prime}\in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), p^{\prime} \in \mathcal{P}_{t^{\prime}}(\omega), s \in \mathcal{S} \ni s > 1, d \in \mathcal{D} \end{array} $$
(67)
$$ \begin{array}{@{}rcl@{}} \displaystyle S_{ptsd}^{D}(\omega) \leq C_{p'tsd}^{D}(\omega) + M\big(1 - {\Theta}^{2}_{ptsd}(\omega)\big)\qquad\qquad\qquad\forall t\in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), p^{\prime} = 1,2,..,p-1, s \in \mathcal{S}, d \in \mathcal{D} \end{array} $$
(68)
$$ \begin{array}{@{}rcl@{}} \displaystyle S_{ptsd}^{D}(\omega) \leq \sum\limits_{n \in \mathcal{N}}^{} C_{ptsn}^{N}(\omega) + M\big(1 - {\Theta}^{3}_{ptsd}(\omega)\big)\qquad\qquad\qquad\forall t \in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), s \in \mathcal{S}, d \in \mathcal{D} \end{array} $$
(69)
$$ \begin{array}{@{}rcl@{}} \displaystyle S_{ptsd}^{D}(\omega) \leq PAT_{sd}^{B} + M\big(1 - {\Theta}^{4}_{ptsd}(\omega)\big)\qquad\qquad\qquad\forall t\in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), s \in \mathcal{S}, d \in \mathcal{D} \end{array} $$
(70)
$$ \begin{array}{@{}rcl@{}} \displaystyle {\Theta}^{1}_{ptsd}(\omega)+{\Theta}^{2}_{ptsd}(\omega)+{\Theta}^{3}_{ptsd}(\omega)+{\Theta}^{4}_{ptsd}(\omega) = \sum\limits_{n \in \mathcal{N}}^{} X_{ptsnd}(\omega)\qquad\qquad\qquad\forall t\in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), s \in \mathcal{S}, d \in \mathcal{D} \end{array} $$
(71)
$$ \begin{array}{@{}rcl@{}} \displaystyle C_{ptsd}^{D}(\omega) \leq S_{ptsd}^{D}(\omega) + \rho_{pt}(\omega) \times (1-\sigma_{pt}(\omega)) + M\big(1 - \sum\limits_{n \in \mathcal{N}}^{} X_{ptsnd}(\omega)\big) \qquad\qquad\qquad\forall t \in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), s \in \mathcal{S}, d \in \mathcal{D} \end{array} $$
(72)
$$ \begin{array}{@{}rcl@{}} \displaystyle C_{ptsd}^{D}(\omega) \geq S_{ptsd}^{D}(\omega) + \rho_{pt}(\omega) \times (1-\sigma_{pt}(\omega)) - M\big(1 - \sum\limits_{n \in \mathcal{N}}^{}X_{ptsnd}(\omega)\big) \qquad\qquad\qquad\forall t \in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), s \in \mathcal{S}, d \in \mathcal{D} \end{array} $$
(73)
$$ \begin{array}{@{}rcl@{}} \displaystyle C_{ptsd}^{D}(\omega) \leq M\sum\limits_{n \in \mathcal{N}}^{} X_{ptsnd}(\omega)\qquad\qquad\qquad\forall t \in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), s \in \mathcal{S}, d \in \mathcal{D} \end{array} $$
(74)
$$ \begin{array}{@{}rcl@{}} \displaystyle L_{sn}^{N}(\omega) \geq C_{ptsn}^{N}(\omega) - M\big(1 - \sum\limits_{n \in \mathcal{D}}^{} X_{ptsnd}(\omega)\big)\qquad\qquad\qquad\forall t \in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), s \in \mathcal{S}, n \in \mathcal{N} \end{array} $$
(75)
$$ \begin{array}{@{}rcl@{}} \displaystyle L_{sn}^{N}(\omega) \leq C_{ptsn}^{N}(\omega) + M\big(1 - \alpha_{ptsn}\big)\qquad\qquad\qquad\forall t \in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), s \in \mathcal{S}, n \in \mathcal{N} \end{array} $$
(76)
$$ \begin{array}{@{}rcl@{}} \displaystyle \sum\limits_{p\in\mathcal{P}_{t}(\omega)}\alpha_{ptsn} = 1\qquad\qquad\qquad\forall t \in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), s \in \mathcal{S}, n \in \mathcal{N}\end{array} $$
(77)
$$ \begin{array}{@{}rcl@{}} \displaystyle L_{sd}^{D}(\omega) \geq C_{ptsd}^{D}(\omega) - M\big(1 - \sum\limits_{n \in \mathcal{N}}^{} X_{ptsnd}(\omega)\big)\qquad\qquad\qquad\forall t \in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), s \in \mathcal{S}, d \in \mathcal{D} \end{array} $$
(78)
$$ \begin{array}{@{}rcl@{}} \displaystyle L_{sd}^{D}(\omega) \leq C_{ptsd}^{D}(\omega) + M\big(1 - \beta_{ptsn}\big)\qquad\qquad\qquad\forall t \in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), s \in \mathcal{S}, d \in \mathcal{D} \end{array} $$
(79)
$$ \begin{array}{@{}rcl@{}} \displaystyle \sum\limits_{p\in\mathcal{P}}\beta_{ptsn} = 1\qquad\qquad\qquad\forall t \in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), s \in \mathcal{S}, d \in \mathcal{D} \end{array} $$
(80)
$$ \begin{array}{@{}rcl@{}} \displaystyle L_{s-1,n}^{N}(\omega) \leq b_{sn}^{N} + M(1- \delta_{sn}) \qquad\qquad\qquad\forall s\in \mathcal{S}\ni s > 1, n \in \mathcal{N} \end{array} $$
(81)
$$ \begin{array}{@{}rcl@{}} \displaystyle L_{s-1,n}^{N}(\omega) \geq b_{sn}^{N} - M\delta_{sn} \qquad\qquad\qquad\forall s\in \mathcal{S}\ni s > 1, n \in \mathcal{N} \end{array} $$
(82)
$$ \begin{array}{@{}rcl@{}} \displaystyle E_{sn}^{N}(\omega) \leq b_{sn}^{N} + M(1-\delta_{sn}) \qquad\qquad\qquad\forall s\in \mathcal{S}\ni s > 1, n \in \mathcal{N} \end{array} $$
(83)
$$ \begin{array}{@{}rcl@{}} \displaystyle E_{sn}^{N}(\omega) \leq L_{s-1,n}^{N}(\omega) + M\delta_{sn}\qquad\qquad\qquad\forall s\in \mathcal{S}\ni s > 1, n \in \mathcal{N} \end{array} $$
(84)
$$ \begin{array}{@{}rcl@{}} \displaystyle L_{s-1,d}^{D}(\omega)\leq b_{sd}^{D} + M(1- {\Delta}_{sd}) \qquad\qquad\qquad\forall s\in \mathcal{S}\ni s > 1, d \in \mathcal{D} \end{array} $$
(85)
$$ \begin{array}{@{}rcl@{}} \displaystyle L_{s-1,d}^{D}(\omega) \geq b_{sd}^{D} - M{\Delta}_{sd} \qquad\qquad\qquad\forall s\in \mathcal{S}\ni s > 1, d \in \mathcal{D} \end{array} $$
(86)
$$ \begin{array}{@{}rcl@{}} \displaystyle E_{sd}^{D}(\omega) \leq b_{sd}^{D} + M(1-{\Delta}_{sd}) \qquad\qquad\qquad\forall s\in \mathcal{S}\ni s > 1, d \in \mathcal{D} \end{array} $$
(87)
$$ \begin{array}{@{}rcl@{}} \displaystyle E_{sd}^{D}(\omega) \leq L_{s-1,d}^{D}(\omega) + M{\Delta}_{sd} \qquad\qquad\qquad\forall s\in \mathcal{S}\ni s > 1, d \in \mathcal{D} \end{array} $$
(88)

Appendix C: Stochastic programming model for a single stage system

In this section, we present the stochastic program model to determine the best schedule configuration of an outpatient clinic with only one stage (doctor). The mathematical model presented in Section 5 can be easily adapted for a single-stage system by eliminating the variables and constraints involving the nurse stage. Therefore, to ensure consistency, we will use the notations presented in Section 5 but without the indices and sets representing the nurse stage. Thus, for the single stage system, the key decision variable is Xptsd(ω) instead of Xptsnd(ω). The objective function (89) is subject to Constraints (90)–(107).

$$ \begin{array}{@{}rcl@{}} &&\text{Minimize}, Z = \displaystyle\sum\limits_{\omega \in {\Omega}} \Bigg(p(\omega) \times \displaystyle{ c^{WT} \Big[ \sum\limits_{t \in \mathcal{T}}\sum\limits_{p \in \mathcal{P}_{t}(\omega) }W_{pt}(\omega) \Big] + c^{DIT} \Big [ \sum\limits_{s \in \mathcal{S}} \sum\limits_{d \in \mathcal{D}} \Big(I_{sd}^{DB}(\omega) + I_{sd}^{DA}(\omega)\Big) \Big ] +} \\&&{ c^{DOT} \Big [ \sum\limits_{s \in \mathcal{S}} \sum\limits_{d \in \mathcal{D}} O_{sd}^{D}(\omega) \Big ]+ c^{OC} \Big[\sum\limits_{t \in \mathcal{T}}\sum\limits_{p \in \mathcal{P}_{t}(\omega)}\Big(1- \sum\limits_{s \in \mathcal{S}}^{}\sum\limits_{d \in \mathcal{D}}^{}X_{ptsd}(\omega)\Big) \Big]} \Bigg ) \end{array} $$
(89)
$$ \begin{array}{@{}rcl@{}} \displaystyle\sum\limits_{d \in \mathcal{D}}^{}\sum\limits_{s \in \mathcal{S}}^{}X_{ptsd}(\omega) \leq 1\qquad\qquad\qquad\forall t \in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), \omega \in {\Omega} \end{array} $$
(90)
$$ \begin{array}{@{}rcl@{}} \displaystyle X_{ptsd}(\omega) + X_{p't'sd}(\omega) \leq 1\qquad\qquad\qquad\forall t = {A}, t^{\prime} = {O}, p \in \mathcal{P}_{t}(\omega), p^{\prime} \in \mathcal{P}_{t^{\prime}}(\omega), s \in \mathcal{S}, d \in \mathcal{D}, \omega \in {\Omega} \end{array} $$
(91)
$$ \begin{array}{@{}rcl@{}} \displaystyle \sum\limits_{t \in {T}} \sum\limits_{p \in \mathcal{P}_{t}(\omega) } X_{ptsd}(\omega) \leq \tau\qquad\qquad \forall d \in \mathcal{D}, s \in {S}, \omega \in {\Omega} \end{array} $$
(92)
$$ \begin{array}{@{}rcl@{}} \displaystyle R_{s}(\omega) = \sum\limits_{d \in \mathcal{D}}^{}\sum\limits_{p \in \mathcal{P}_{t}(\omega)}^{}X_{ptsd}(\omega) \qquad\qquad\forall t = \{A\}, s \in \mathcal{S}, \omega \in {\Omega} \end{array} $$
(93)
$$ \begin{array}{@{}rcl@{}} \displaystyle &&S_{ptsd}^{D}(\omega) = \max \Bigg\{ \Big(\sum\limits_{s \in \mathcal{S}}b_{sd}^{D} \times \sum\limits_{s \in \mathcal{S}}\sum\limits_{n \in \mathcal{N}} X_{ptsd}(\omega)\Big), \\ \ &&\Big(L_{s-1,d}^{D}(\omega) \times \sum\limits_{n \in \mathcal{N}} X_{ptsd}(\omega) : s\in \mathcal{S} \ni s>1 \Big), \\ &&\Big(C_{p'tsd}^{D}(\omega) \times X_{ptsd}(\omega): p^{\prime} \in \mathcal{P}_{t}(\omega) \ni p^{\prime} \leq p-1, s \in \mathcal{S}\Big) \Bigg\} \qquad\qquad\qquad\forall t \in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), d \in \mathcal{D}, \omega \in {\Omega} \end{array} $$
(94)
$$ \begin{array}{@{}rcl@{}} \displaystyle S_{ptsd}^{D}(\omega) \leq M X_{ptsd}(\omega)\qquad\qquad\qquad\forall t \in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), s \in \mathcal{S}, d \in \mathcal{D}, \omega \in {\Omega} \end{array} $$
(95)
$$ \begin{array}{@{}rcl@{}} \displaystyle C_{ptsd}^{D}(\omega) = \Big(S_{ptsd}^{D}(\omega) + \rho_{pt}(\omega) \times (1 - \sigma_{pt}(\omega))\Big) \times X_{ptsd}(\omega) \qquad\qquad\qquad\forall t\in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), s \in \mathcal{S}, d \in \mathcal{D}, \omega \in {\Omega} \end{array} $$
(96)
$$ \begin{array}{@{}rcl@{}} \displaystyle L_{sd}^{D}(\omega) = \max \Big(C_{ptsd}^{D}(\omega) \times X_{ptsd}(\omega) : t \in \mathcal{T}, p \in \mathcal{P}_{t}(\omega)\Big) \qquad\qquad\qquad\forall s \in \mathcal{S}, d \in \mathcal{D}, \omega \in {\Omega} \end{array} $$
(97)
$$ \begin{array}{@{}rcl@{}} \displaystyle E_{sd}^{D}(\omega) = b_{sd}^{D} \qquad\qquad\qquad\forall s \in \mathcal{S} \ni s = 1, d \in \mathcal{D}, \omega \in {\Omega} \end{array} $$
(98)
$$ \begin{array}{@{}rcl@{}} \displaystyle E_{sd}^{D}(\omega) = \max \Big(b_{sd}^{D}, L_{s-1,d}^{D}(\omega)\Big)\qquad\qquad\qquad\forall s \in \mathcal{S} \ni s > 1, d \in \mathcal{D}, \omega \in {\Omega} \end{array} $$
(99)
$$ \begin{array}{@{}rcl@{}} \displaystyle I_{sd}^{DB}(\omega) \geq L_{sd}^{D}(\omega) - E_{sd}^{D}(\omega) - \sum\limits_{t \in \mathcal{T}}\sum\limits_{p \in \mathcal{P}_{t}(\omega)}\rho_{pt}(\omega) \times (1-\sigma_{pt}(\omega)) \times X_{ptsd}(\omega)\qquad\qquad\qquad\forall s \in \mathcal{S}, d \in \mathcal{D}, \omega \in {\Omega} \end{array} $$
(100)
$$ \begin{array}{@{}rcl@{}} \displaystyle I_{sd}^{DA}(\omega) - O_{sd}^{D}(\omega) \geq f_{sd}^{D} - L_{sd}^{D}(\omega)\qquad\qquad\qquad\forall s \in \mathcal{S}, d \in \mathcal{D}, \omega \in {\Omega} \end{array} $$
(101)
$$ \begin{array}{@{}rcl@{}} \displaystyle {O_{d}^{D}}(\omega) = L_{sd}^{D}(\omega) - f_{sd}^{D}\qquad\qquad\qquad\forall s \in \mathcal{S}\ni s = |\mathcal{S}|, d \in \mathcal{D}, \omega \in {\Omega} \end{array} $$
(102)
$$ \begin{array}{@{}rcl@{}} \displaystyle W_{pt}(\omega) = (1-\sigma_{pt}(\omega))\times\Bigg(\sum\limits_{s \in \mathcal{S}}^{}\sum\limits_{d \in \mathcal{D}}^{}\Big(S_{ptsd}^{D}(\omega) - b_{sd}^{D} \times X_{ptsd}(\omega)\Big)\Bigg) \qquad\qquad\qquad\forall t \in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), \omega \in {\Omega} \end{array} $$
(103)
$$ \begin{array}{@{}rcl@{}} \displaystyle \hat{W}_{pt}(\omega) \geq W_{pt}(\omega) - \kappa\qquad\qquad\qquad\forall t \in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), \omega \in {\Omega} \end{array} $$
(104)
$$ \begin{array}{@{}rcl@{}} \displaystyle R_{s}(\omega) - R_{s} = 0\qquad\qquad\qquad\forall s \in \mathcal{S}, \omega \in {\Omega} \end{array} $$
(105)
$$ \begin{array}{@{}rcl@{}} &&S_{ptsd}^{D}(\omega),C_{ptsd}^{D}(\omega), L_{sd}^{D}(\omega),DIT_{sd}^{\omega}, \\ &&I_{sd}^{DB}(\omega) , I_{sd}^{DA}(\omega), O_{sd}^{D}(\omega),W_{pt}^{}(\omega) \geq 0\qquad\qquad\qquad\forall t\in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), s \in \mathcal{S}, d \in \mathcal{D}, \omega \in {\Omega} \end{array} $$
(106)
$$ \begin{array}{@{}rcl@{}} &&X_{ptsd}(\omega) \in \{0, 1\}\qquad\qquad\qquad\forall t\in \mathcal{T}, p \in \mathcal{P}_{t}(\omega), s \in \mathcal{S}, d \in \mathcal{D}, \omega \in {\Omega} \end{array} $$
(107)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivas, S., Ravindran, A.R. Designing schedule configuration of a hybrid appointment system for a two-stage outpatient clinic with multiple servers. Health Care Manag Sci 23, 360–386 (2020). https://doi.org/10.1007/s10729-019-09501-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10729-019-09501-4

Keywords

Navigation