Skip to main content
Log in

Transcription and enzymatic analysis of beta-glucosidase VvBG1 in grape berry ripening

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Although beta-glucosidase was recently demonstrated to be involved at transcriptional level in fleshy fruit development, it remains unclear whether BG possesses biochemical activity. In the present study, real-time reverse transcription polymerase chain reaction analysis showed that the mRNA expression levels of β-glucosidase gene VvBG1 increased rapidly concomitant with berry red-colouring in Muscat Hamburg grapevine (Vitis vinifera), suggesting that the VvBG1 gene might be involved in the berry ripening. In order to explore VvBG1 biochemical activity, a 60-kD recombinant protein, VvBG1, was expressed in Escherichia coli BL21 (DE3) and purified. The results gained from a combination of VvBG1-pulp-homogeneity-incubation test and gas chromatography-mass spectroscopy analysis showed that VvBG1-treated berry samples contained more free ABA than the control, demonstrating that VvBG1 has high glycosyl hydrolase activity that can transform the ABA-glucosyl ester to free ABA. In conclusion, both the high expression and increased hydrolase activity of VvBG1 could suggest an important role of ABA in grape berry ripening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ABA-GE:

ABA glucosyl ester

NCED:

9-cis-Epoxycarotenoid dioxygenase

BG:

Beta-glucosidase

CYP:

ABA 8′-hydroxylase

GT:

ABA glucosyltransferase

References

  • Chai YM, Jia HF, Li CL, Dong QH, Shen YY (2011) FaPYR1 is involved in strawberry fruit ripening. J Exp Bot 62:5079–5089

    Article  CAS  PubMed  Google Scholar 

  • Coombe BG (1992) Research on development and ripening of the grape berry. Am J Enol Vitic 43:101–110

    Google Scholar 

  • Gagné S, Cluzet S, Merillon JM, Gény L (2011) ABA initiates anthocyanin production in grape cell cultures. J Plant Growth Regul 30:1–10

    Article  Google Scholar 

  • Giovannoni J (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725–749

    Article  CAS  PubMed  Google Scholar 

  • Giribaldi M, Gény L, Delrot S, Schubert A (2010) Proteomic analysis of the effects of ABA treatments on ripening vitis vinifera berries. J Exp Bot 61:2447–2458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jia HF, Zhu XQ, Li CL, Shen YY (2008) An effective method and its modifications for isolation of high-quality total RNA from fruit pulps. J Agric Sci 2:58–62

    Google Scholar 

  • Jia HF, Chai YM, Li CL, Lu D, Luo JJ, Qin L, Shen YY (2011) Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol 157:188–199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jia HF, Lu D, Sun JH, Li CL, Xing Y, Qin L, Shen YY (2013) Type 2C protein phosphatase ABI1 is a negative regulator of strawberry fruit ripening. J Exp Bot 64:1677–1687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, Hartung W, Hwang I, Kwak JM, Lee IJ, Hwang J (2006) Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126:1109–1120

    Article  CAS  PubMed  Google Scholar 

  • Lehmamm H, Schutte HR (1984) Abscisic-acid metabolism in intact wheat seedlings under normal and stress conditions. J Plant Physiol 117:201–209

    Article  Google Scholar 

  • Li CL, Jia HF, Chai YM, Shen YY (2011) Abscisic acid perception and signaling transduction in strawberry: a model for non-climacteric fruit ripening. Plant Signal Behav 6:1950–1953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Q, Li P, Sun L, Wang Y, Ji K, Sun Y, Dai S, Chen P, Duan C, Leng P (2012) Expression analysis of β-glucosidase genes that regulate abscisic acid homeostasis during watermelon (Citrullus lanatus) development and under stress conditions. J Plant Physiol 169:78–85

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Ji K, Sun Y, Luo H, Wang H, Leng P (2013) The role of FaBG3 in fruit ripening and B. cinerea fungal infection of strawberry. Plant J 76:24–35

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC T Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Nambara E, Marion-poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  CAS  PubMed  Google Scholar 

  • Nicolas P, Lecourieux D, Kappel C, Cluzet S, Cramer G, Delrot S, Lecourieux F (2014) The basic leucine zipper transcription factor abscisic acid response element-binding factor 2 is an important transcriptional regulator of abscisic acid-dependent grape berry ripening processes. Plant Physiol 164:365–383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qin X, Zeevaart JAD (1999) The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci 96:15354–15361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saito S, Hiyai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M (2004) Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative atabolism of abscisic acid. Plant Physiol 134:1439–1449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schwartz SH, Tan BC, Gage DA, Zeevaart JAD, Mccarty DR (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276:1872–1874

    Article  CAS  PubMed  Google Scholar 

  • Tan BC, Schwartz SH, Zeevaart JAD, Mccarty DR (1997) Genetic controlof abscisic acid biosynthesis in maize. Proc Natl Acad Sci 94:12235–12240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Wang Y, Ji K, Dai S, Hu Y, Sun L, Li Q, Chen P, Sun Y, Duan C, Wu Y, Luo H, Zhang D, Guo Y, Leng P (2013) The role of abscisic acid in regulating cucumber fruit development and ripening and its transcriptional regulation. Plant Physiol Biochem 64:70–79

    Article  CAS  PubMed  Google Scholar 

  • Wheeler S, Loveys B, Ford C, Davies C (2009) The relationship between the expression of abscisic acid biosynthesis genes, accumulation of abscisic acid and the promotion of Vitis vinifera L. berry ripening by abscisic acid. Aust J Grape Wine Res 15:195–204

    Article  CAS  Google Scholar 

  • Xu ZJ, Nakajima M, Suzuk Y, Yamaguchi I (2002) Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings. Plant Physiol 129:1285–1295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu XC, Li MJ, Gao GF, Feng HZ, Geng XQ, Peng CC, Zhu SY, Wang XJ, Shen YY, Zhang DP (2006) Abscisic acid stimulates a calciumdependent protein kinase in grape berry. Plant Physiol 140:558–579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zeevaart JAD (1999) Abscisic acid metabolism and its regulation in biochemistry and molecular biology of plant Hormones. Elsevier, Amsterdam, pp 189–207

    Book  Google Scholar 

  • Zhang M, Leng P, Zhang G, Li X (2009) Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits. J Plant Physiol 166:1241–1252

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the National Key Basic Research ‘973’ Program of China (grant no. 2012CB126306), the National Science Foundation of China (grant no 31272144), and the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality (grant no. IDHT20140509).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-yue Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Jh., Dong, Yh., Li, Cl. et al. Transcription and enzymatic analysis of beta-glucosidase VvBG1 in grape berry ripening. Plant Growth Regul 75, 67–73 (2015). https://doi.org/10.1007/s10725-014-9932-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-014-9932-x

Keywords

Navigation