Skip to main content
Log in

Biochemical and molecular analysis of a temperature-sensitive albino mutant in kale named “White Dove”

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

“White Dove” is a mutant in kale (Brassica oleracea var. acephala f. tricolor), which exhibits a mutant albino phenotype in the interior of the plant under low temperature conditions. Chlorophyll content in “White Dove” was dramatically reduced under low temperature conditions, while the content in “Green Dove” decreased slightly under the same conditions. The levels of five chlorophyll precursors suggested that chlorophyll biosynthesis in white kale was inhibited by low temperature stress at the step of Pchlide. However, Mg-Proto IX was not inhibited in white kale grown under low temperature conditions. The results of quantitative RT-PCR illustrated that the chlorophyll biosynthetic genes in the white cultivar were dramatically down-regulated by low temperature stress from the step of POR, while CISC and DBB1B in the white cultivar were dramatically induced under low temperature conditions. The results of transmission electron microscopy analysis showed that there were normal chloroplasts in the young leaves of white kale grown at 20 °C, whereas proplastids were observed in white kale grown at 5 °C. These results strongly suggested that low-temperature stress significantly inhibited plastid development in the young leaves of white kale, and repressed chlorophyll biosynthesis at the step of Pchlide by down-regulating the expression of downstream chlorophyll biosynthetic genes, resulting in undifferentiated proplastids and the albino phenotype observed in young leaves. Several genes associated with chlorophyll accumulation were also affected by low temperature conditions in white kale, especially CISC and DBB1B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ankele E, Kindgren P, Pesquet E, Strand Å (2007) In vivo visualization of Mg-ProtoporphyrinIX, a coordinator of photosynthetic gene expression in the nucleus and the chloroplast. Plant Cell 19:1964–1979

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Armstrong GA, Runge S, Frick G, Sperling U, Apel K (1995) Identification of NADPH: protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol 108:1505–1517

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt A, Mooney S, Hellmann H (2010) Arabidopsis DDB1a and DDB1b are critical for embryo development. Planta 232:555–566

    Article  PubMed  CAS  Google Scholar 

  • Bevins MA, Madhavan S, Markwell J (1993) Two sweetclover (Melilotus alba Desr.) mutants temperature sensitive for chlorophyll expression. Plant Physiol 103:1123–1131

    PubMed  CAS  Google Scholar 

  • Blomqvist LA, Ryberg M, Sundqvist C (2008) Proteomic analysis of highly purified prolamellar bodies reveals their significance in chloroplast development. Photosynth Res 96:37–50

    Article  PubMed  CAS  Google Scholar 

  • Bogorad L (1962) Porphyrin synthesis. In: Colowick SP, Kaplan NO (eds) Methods in enzymology 5. Academic Press, New York, pp 885–891

    Google Scholar 

  • Chu G, Chang E (1988) Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA. Science 242:564–567

    Article  PubMed  CAS  Google Scholar 

  • Cookson P, Kiano J, Shipton C, Fraser P, Romer S, Schuch W, Bramley P, Pyke K (2003) Increases in cell elongation, plastid compartment size and phytoene synthase activity underlie the phenotype of the high pigment-1 mutant of tomato. Planta 217:896–903

    Article  PubMed  CAS  Google Scholar 

  • Du Y, Chen H, Zhong W, Wu L, Ye J, Lin C, Zheng X, Lu J, Liang Y (2008) Effect of temperature on accumulation of chlorophylls and leaf ultrastructure of low temperature induced albino tea plant. Afr J Biotechnol 7:1881–1885

    Google Scholar 

  • Eckhardt U, Grimm B, Hörtensteiner S (2004) Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol 56:1–14

    Article  PubMed  CAS  Google Scholar 

  • Griffiths WT (1978) Reconstitution of chlorophyllide formation by isolated etioplast membranes. Biochem J 174:681–692

    PubMed  CAS  Google Scholar 

  • Grossman AR, Lohr M, Im CS (2004) Chlamydomonas reinhardtii in the landscape of pigments. Annu Rev Genet 38:119–173

    Article  PubMed  CAS  Google Scholar 

  • Hammani K, Okuda K, Tanz SK, Chateigner-Boutin AL, Shikanai T, Small I (2009) A study of new Arabidopsis chloroplast RNA editing mutants reveals general features of editing factors and their target sites. Plant Cell 21:3686–3699

    Article  PubMed  CAS  Google Scholar 

  • Heaney RP, Weaver CM (1990) Calcium absorption from kale. Am J Clin Nutr 51:656–657

    PubMed  CAS  Google Scholar 

  • Holtorf H, Reinbothe S, Reinbothe C, Bereza B, Apel K (1995) Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.). Proc Natl Acad Sci USA 92:3254–3258

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa A, Okamoto H, Iwasaki Y, Asahi T (2001) A deficiency of coproporphyrinogen III oxidase causes lesion formation in Arabidopsis. Plant J 27:89–99

    Article  PubMed  CAS  Google Scholar 

  • Keck RW, Dilley RA, Allen CF, Biggs S (1970) Chloroplast composition and structure differences in a soybean mutant. Plant Physiol 46:692–698

    Article  PubMed  CAS  Google Scholar 

  • Keeney S, Chang G, Linn S (1993) Characterization of a human DNA damage binding protein implicated in xeroderma pigmentosum E. J Biol Chem 268:21293–21300

    PubMed  CAS  Google Scholar 

  • Kruk J (2005) Occurrence of chlorophyll precursors in leaves of cabbage heads-the case of natural etiolation. J Photochem Photobiol B Biol 80:187–194

    Article  CAS  Google Scholar 

  • Kumar AM, Söll D (2000) Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis. Plant Physiol 122:49–56

    Article  PubMed  CAS  Google Scholar 

  • Lan T, Wang B, Ling QP, Xu CH, Tong ZJ, Liang KJ, Duan YL, Jin J, Wu WR (2010) Fine mapping of cisc (t), a gene for cold-induced seedling chlorosis, and identification of its candidate in rice. Chin Sci Bull 55:3149–3153

    Article  CAS  Google Scholar 

  • Landau AM, Lokstein H, Scheller HV, Lainez V, Maldonado S, Prina AR (2009) A cytoplasmically inherited barley mutant is defective in photosystem I assembly due to a temperature-sensitive defect in ycf3 splicing. Plant Physiol 151:1802–1811

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Duke MV, Duke SO (1993) Cellular localization of protoporphyrinogen-oxidizing activities of etiolated barley (Hordeum vulgare L.) leaves. Plant Physiol 102:881–889

    PubMed  CAS  Google Scholar 

  • Lefsrud MG, Kopsell DA, Kopsell DE, Curran-Celentano J (2005) Air temperature affects biomass and carotenoid pigment accumulation in kale and spinach grown in a controlled environment. Hort Sci 40:2026–2030

    CAS  Google Scholar 

  • Lermontova I, Kruse E, Mock HP, Grimm B (1997) Cloning and characterization of a plastidal and a mitochondrial isoform of tobacco protoporphyrinogen IX oxidase. Proc Natl Acad Sci USA 94:8895–8900

    Article  PubMed  CAS  Google Scholar 

  • Lieberman M, Segev O, Gilboa N, Lalazar A, Levin I (2004) The tomato homolog of the gene encoding UV-damaged DNA binding protein 1 (DDB1) underlined as the gene that causes the high pigment-1 mutant phenotype. Theor Appl Genet 108:1574–1581

    Article  PubMed  CAS  Google Scholar 

  • Lurin C, Andrés C, Aubourg S, Bellaoui M, Bitton F, Bruyère C, Caboche M, Debast C, Gualberto J, Hoffmann B (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16:2089–2103

    Article  PubMed  CAS  Google Scholar 

  • Markwell J, Osterman JC (1992) Occurrence of temperature-sensitive phenotypic plasticity in chlorophyll-deficient mutants of Arabidopsis thaliana. Plant Physiol 98:392–394

    Article  PubMed  CAS  Google Scholar 

  • McCormac AC, Terry MJ (2002) Light-signalling pathways leading to the co-ordinated expression of HEMA1 and Lhcb during chloroplast development in Arabidopsis thaliana. Plant J 32:549–559

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki N, Tanaka R, Tanaka A, Masuda T, Nagatani A (2008) The steady state level of Mg-protoporphyrin IX is not a determinant of plastid-to-nucleus signaling in Arabidopsis. Proc Natl Acad Sci USA 105:15184–15189

    Article  PubMed  CAS  Google Scholar 

  • Moulin M, McCormac AC, Terry MJ, Smith AG (2008) Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mg-protoporphyrin IX accumulation. Proc Natl Acad Sci USA 105:15178–15183

    Article  PubMed  CAS  Google Scholar 

  • Mustilli AC, Fenzi F, Ciliento R, Alfano F, Bowler C (1999) Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. Plant Cell 11:145–157

    PubMed  CAS  Google Scholar 

  • Oosawa N, Masuda T, Awai K, Fusada N, Shimada H, Ohta H, Takamiya K (2000) Identification and light-induced expression of a novel gene of NADPH-protochlorophyllide oxidoreductase isoform in Arabidopsis thaliana. FEBS Lett 474:133–136

    Article  PubMed  CAS  Google Scholar 

  • Pasini L, Bruschini S, Bertoli A, Mazza R, Fracheboud Y, Marocco A (2005) Photosynthetic performance of cold-sensitive mutants of maize at low temperature. Physiol Plant 124:362–370

    Article  CAS  Google Scholar 

  • Pontoppidan B, Kannangara CG (1994) Purification and partial characterisation of barley glutamyl-tRNA(Glu) reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. Eur J Biochem 225:529–537

    Article  PubMed  CAS  Google Scholar 

  • Rascio N, Mariani Colombo P, Orsinego M (1980) The ultrastructural development of plastids in leaves of maize plants exposed to continuous illumination. Protoplasma 102:131–139

    Article  Google Scholar 

  • Rebeiz CA, Mattheis JR, Smith BB, Rebeiz CC, Dayton DF (1975) Chloroplast biogenesis and accumulation of protochlorophyll by isolated etioplasts and developing chloroplasts. Arch Biochem Biophys 171:549–567

    Article  PubMed  CAS  Google Scholar 

  • Schroeder DF, Gahrtz M, Maxwell BB, Cook RK, Kan JM, Alonso JM, Ecker JR, Chory J (2002) De-Etiolated 1 and damaged DNA binding protein 1 interact to regulate Arabidopsis photomorphogenesis. Curr Biol 12:1462–1472

    Article  PubMed  CAS  Google Scholar 

  • Small ID, Peeters N (2000) The PPR motif-A TPR-related motif prevalent in plant organellarproteins. Trends Biochem Sci 25:46–47

    Article  PubMed  CAS  Google Scholar 

  • Solymosi K, Vitányi B, Hideg É, Böddi B (2007) Etiolation symptoms in sunflower (Helianthus annuus) cotyledons partially covered by the pericarp of the achene. Ann Bot 99:857–867

    Article  PubMed  CAS  Google Scholar 

  • Strand Å, Asami T, Alonso J, Ecker JR, Chory J (2003) Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX. Nature 421:79–83

    Google Scholar 

  • Sundberg E, Slagter JG, Fridborg I, Cleary SP, Robinson C, Coupland G (1997) ALBIN03, an Arabidopsis nuclear gene essential for chloroplast differentiation, encodes a chloroplast protein that shows homology to proteins present in bacterial membranes and yeast mitochondria. Plant Cell 9:717–730

    PubMed  CAS  Google Scholar 

  • Von Wettstein D, Gough S, Kannangara CG (1995) Chlorophyll biosynthesis. Plant Cell 7:1039–1057

    Google Scholar 

  • Vothknecht UC, Kannangara CG, Wettstein DV (1996) Expression of catalytically active barley glutamyl tRNAGlu reductase in Escherichia coli as a fusion protein with glutathione S-transferase. Proc Natl Acad Sci USA 93:9287–9291

    Article  PubMed  CAS  Google Scholar 

  • Watanabe N, Che FS, Iwano M, Takayama S, Yoshida S, Isogai A (2001) Dual targeting of spinach protoporphyrinogen oxidase II to mitochondria and chloroplasts by alternative use of two in-frame initiation codons. J Biol Chem 276:20474–20481

    Article  PubMed  CAS  Google Scholar 

  • Yanagawa Y, Sullivan JA, Komatsu S, Gusmaroli G, Suzuki G, Yin J, Ishibashi T, Saijo Y, Rubio V, Kimura S (2004) Arabidopsis COP10 forms a complex with DDB1 and DET1 in vivo and enhances the activity of ubiquitin conjugating enzymes. Genes Dev 18:2172–2181

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, He H, Li H, Tian H, Zhang J, Zhai L, Chen J, Wu H, Yi G, He ZH (2011) NOA1 functions in a temperature-dependent manner to regulate chlorophyll biosynthesis and rubisco formation in rice. PLoS ONE 6:e20015

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Feng S, Chen F, Chen H, Wang J, McCall C, Xiong Y, Deng XW (2008) Arabidopsis DDB1-CUL4 ASSOCIATED FACTOR1 forms a nuclear E3 ubiquitin ligase with DDB1 and CUL4 that is involved in multiple plant developmental processes. Plant Cell 20:1437–1455

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Doctoral Program Foundation of Institutions of Higher Education of China (20100191110031), the National Natural Science Foundation of China (No. 31101546), and Fundamental Research Funds for the Central Universities (No. CDJXS11232244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, S., Hu, Z., Zhu, M. et al. Biochemical and molecular analysis of a temperature-sensitive albino mutant in kale named “White Dove”. Plant Growth Regul 71, 281–294 (2013). https://doi.org/10.1007/s10725-013-9829-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-013-9829-0

Keywords

Navigation