Skip to main content
Log in

Thrombospondin type 1 repeat-derived C-mannosylated peptide attenuates synaptogenesis of cortical neurons induced by primary astrocytes via TGF-β

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

C-Mannosylation is a rare type of protein glycosylation and is reportedly critical for the proper folding and secretion of parental proteins. Still, the effects of C-mannosylation on the biological functions of these modified proteins remain to be elucidated. The Trp-x-x-Trp (WxxW) sequences, whose first tryptophan (Trp) can be C-mannosylated, constitute the consensus motifs for this glycosylation modification and are commonly found in thrombospondin type 1 repeats that regulate molecular functions of thrombospondin 1 in binding and activation of transforming growth factor β (TGF-β). TGF-β plays critical roles in the control of the central nervous system including synaptogenesis. Here, we investigated whether C-mannosylation of the synthetic Trp-Ser-Pro-Trp (WSPW) peptide may confer certain functions to this peptide in TGF-β-mediated synaptogenesis. By using primary cultured rat astrocytes and cortical neurons, we found that the C-mannosylated WSPW (C-Man-WSPW) peptide, but not non-mannosylated WSPW peptide, suppressed astrocyte-conditioned medium (ACM)-stimulated synaptogenesis. C-Man-WSPW peptide inhibited both ACM- and recombinant mature TGF-β1-induced activations of Smad 2, an important mediator in TGF-β signaling. Interactions of recombinant mature TGF-β with the C-Man-WSPW peptide were similar to those with non-C-mannosylated WSPW peptide. Taken together, our results reveal a novel function of C-mannosylation of the WxxW motif in signaling and synaptogenesis mediated by TGF-β. Molecular details of how C-mannosylation affects the biological functions of WxxW motifs deserve future study for clarification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

ACM:

Astrocyte-conditioned medium

C-Man-WSPW peptide :

C-Mannosylated WSPW peptide

FBS:

Fetal bovine serum

PBS:

Phosphate-buffered saline

PSD-95:

Postsynaptic density protein 95

TGF-β:

Transforming growth factor β

TSP:

Thrombospondin

TSR:

Thrombospondin type 1 repeat

References

  1. Doucey, M.A., Hess, D., Blommers, M.J., Hofsteenge, J.: Recombinant human interleukin-12 is the second example of a C-mannosylated protein. Glycobiology 9(5), 435–441 (1999)

    Article  CAS  Google Scholar 

  2. Krieg, J., Glasner, W., Vicentini, A., Doucey, M.A., Loffler, A., Hess, D., Hofsteenge, J.: C-Mannosylation of human RNase 2 is an intracellular process performed by a variety of cultured cells. J. Biol. Chem. 272(42), 26687–26692 (1997)

    Article  CAS  Google Scholar 

  3. Gade, G., Kellner, R., Rinehart, K.L., Proefke, M.L.: A tryptophan-substituted member of the AKH/RPCH family isolated from a stick insect corpus cardiacum. Biochem. Biophys. Res. Commun. 189(3), 1303–1309 (1992)

    Article  CAS  Google Scholar 

  4. Hofsteenge, J., Muller, D.R., de Beer, T., Loffler, A., Richter, W.J., Vliegenthart, J.F.: New type of linkage between a carbohydrate and a protein: C-glycosylation of a specific tryptophan residue in human RNase Us. Biochemistry 33(46), 13524–13530 (1994)

    Article  CAS  Google Scholar 

  5. Furmanek, A., Hofsteenge, J.: Protein C-mannosylation: facts and questions. Acta. Biochim. Pol. 47(3), 781–789 (2000)

    Article  CAS  Google Scholar 

  6. Buettner, F.F., Ashikov, A., Tiemann, B., Lehle, L., Bakker, H.: C. elegans DPY-19 is a C-mannosyltransferase glycosylating thrombospondin repeats. Mol. Cell 50(2), 295–302 (2013)

  7. Niwa, Y., Suzuki, T., Dohmae, N., Simizu, S.: Identification of DPY19L3 as the C-mannosyltransferase of R-spondin1 in human cells. Mol. Biol. Cell 27(5), 744–756 (2016)

    Article  CAS  Google Scholar 

  8. Shcherbakova, A., Tiemann, B., Buettner, F.F., Bakker, H.: Distinct C-mannosylation of netrin receptor thrombospondin type 1 repeats by mammalian DPY19L1 and DPY19L3. Proc. Natl. Acad. Sci. USA 114(10), 2574–2579 (2017)

    Article  CAS  Google Scholar 

  9. Fujiwara, M., Kato, S., Niwa, Y., Suzuki, T., Tsuchiya, M., Sasazawa, Y., Dohmae, N., Simizu, S.: C-mannosylation of R-spondin3 regulates its secretion and activity of Wnt/beta-catenin signaling in cells. FEBS Lett. 590(16), 2639–2649 (2016)

    Article  CAS  Google Scholar 

  10. Frank, M., Beccati, D., Leeflang, B.R., Vliegenthart, J.F.G.: C-Mannosylation Enhances the Structural Stability of Human RNase 2. iScience 23(8), 101371 (2020)

  11. Shcherbakova, A., Preller, M., Taft, M.H., Pujols, J., Ventura, S., Tiemann, B., Buettner, F.F., Bakker, H.: C-mannosylation supports folding and enhances stability of thrombospondin repeats. Elife 8 (2019)

  12. Olsen, J.G., Kragelund, B.B.: Who climbs the tryptophan ladder? On the structure and function of the WSXWS motif in cytokine receptors and thrombospondin repeats. Cytokine Growth Factor Rev. 25(3), 337–341 (2014)

    Article  CAS  Google Scholar 

  13. Christopherson, K.S., Ullian, E.M., Stokes, C.C., Mullowney, C.E., Hell, J.W., Agah, A., Lawler, J., Mosher, D.F., Bornstein, P., Barres, B.A.: Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120(3), 421–433 (2005)

    Article  CAS  Google Scholar 

  14. Tan, K., Duquette, M., Liu, J.H., Dong, Y., Zhang, R., Joachimiak, A., Lawler, J., Wang, J.H.: Crystal structure of the TSP-1 type 1 repeats: a novel layered fold and its biological implication. J. Cell Biol. 159(2), 373–382 (2002)

    Article  CAS  Google Scholar 

  15. Hofsteenge, J., Blommers, M., Hess, D., Furmanek, A., Miroshnichenko, O.: The four terminal components of the complement system are C-mannosylated on multiple tryptophan residues. J. Biol. Chem. 274(46), 32786–32794 (1999)

    Article  CAS  Google Scholar 

  16. Gouyer, V., Demouveaux, B., Lacroix, G., Valque, H., Gottrand, F., Desseyn, J.L.: Non-C-mannosylable mucin CYS domains hindered proper folding and secretion of mucin. Biochem. Biophys. Res. Commun. 506(4), 812–818 (2018)

    Article  CAS  Google Scholar 

  17. Hilton, D.J., Watowich, S.S., Katz, L., Lodish, H.F.: Saturation mutagenesis of the WSXWS motif of the erythropoietin receptor. J. Biol. Chem. 271(9), 4699–4708 (1996)

    Article  CAS  Google Scholar 

  18. Taylor, K.M., Trimby, A.R., Campbell, A.K.: Mutation of recombinant complement component C9 reveals the significance of the N-terminal region for polymerization. Immunology 91(1), 20–27 (1997)

    Article  CAS  Google Scholar 

  19. Sweetwyne, M.T., Murphy-Ullrich, J.E.: Thrombospondin1 in tissue repair and fibrosis: TGF-beta-dependent and independent mechanisms. Matrix. Biol. 31(3), 178–186 (2012)

    Article  CAS  Google Scholar 

  20. Ihara, Y., Manabe, S., Ikezaki, M., Inai, Y., Matsui, I.S., Ohta, Y., Muroi, E., Ito, Y.: C-Mannosylated peptides derived from the thrombospondin type 1 repeat interact with Hsc70 to modulate its signaling in RAW264.7 cells. Glycobiology 20(10), 1298–1310 (2010)

  21. Eroglu, C., Barres, B.A.: Regulation of synaptic connectivity by glia. Nature 468(7321), 223–231 (2010)

    Article  CAS  Google Scholar 

  22. Chung, W.S., Barres, B.A.: The role of glial cells in synapse elimination. Curr. Opin. Neurobiol. 22(3), 438–445 (2012)

    Article  CAS  Google Scholar 

  23. Allen, N.J., Eroglu, C.: Cell Biology of Astrocyte-Synapse Interactions. Neuron 96(3), 697–708 (2017)

    Article  CAS  Google Scholar 

  24. Ullian, E.M., Sapperstein, S.K., Christopherson, K.S., Barres, B.A.: Control of synapse number by glia. Science 291(5504), 657–661 (2001)

    Article  CAS  Google Scholar 

  25. Diniz, L.P., Almeida, J.C., Tortelli, V., Vargas Lopes, C., Setti-Perdigao, P., Stipursky, J., Kahn, S.A., Romao, L.F., de Miranda, J., Alves-Leon, S.V., de Souza, J.M., Castro, N.G., Panizzutti, R., Gomes, F.C.: Astrocyte-induced synaptogenesis is mediated by transforming growth factor beta signaling through modulation of D-serine levels in cerebral cortex neurons. J. Biol. Chem. 287(49), 41432–41445 (2012)

    Article  CAS  Google Scholar 

  26. Diniz, L.P., Tortelli, V., Garcia, M.N., Araujo, A.P., Melo, H.M., Silva, G.S., Felice, F.G., Alves-Leon, S.V., Souza, J.M., Romao, L.F., Castro, N.G., Gomes, F.C.: Astrocyte transforming growth factor beta 1 promotes inhibitory synapse formation via CaM kinase II signaling. Glia 62(12), 1917–1931 (2014)

    Article  Google Scholar 

  27. Romao, L.F., Sousa Vde, O., Neto, V.M., Gomes, F.C.: Glutamate activates GFAP gene promoter from cultured astrocytes through TGF-beta1 pathways. J. Neurochem. 106(2), 746–756 (2008)

    Article  CAS  Google Scholar 

  28. Derynck, R., Zhang, Y., Feng, X.H.: Smads: transcriptional activators of TGF-beta responses. Cell 95(6), 737–740 (1998)

    Article  CAS  Google Scholar 

  29. Manabe, S., Marui, Y., Ito, Y.: Total synthesis of mannosyl tryptophan and its derivatives. Chem. Eur. J. 9(6), 1435–1447 (2003)

    Article  Google Scholar 

  30. Muroi, E., Manabe, S., Ikezaki, M., Urata, Y., Sato, S., Kondo, T., Ito, Y., Ihara, Y.: C-Mannosylated peptides derived from the thrombospondin type 1 repeat enhance lipopolysaccharide-induced signaling in macrophage-like RAW264.7 cells. Glycobiology 17(9), 1015–1028 (2007)

  31. Michikawa, M., Gong, J.S., Fan, Q.W., Sawamura, N., Yanagisawa, K.: A novel action of alzheimer’s amyloid beta-protein (Abeta): oligomeric Abeta promotes lipid release. J. Neurosci. 21(18), 7226–7235 (2001)

    Article  CAS  Google Scholar 

  32. Lawler, J., Hynes, R.O.: The structure of human thrombospondin, an adhesive glycoprotein with multiple calcium-binding sites and homologies with several different proteins. J. Cell Biol. 103(5), 1635–1648 (1986)

    Article  CAS  Google Scholar 

  33. Derynck, R., Budi, E.H.: Specificity, versatility, and control of TGF-beta family signaling. Sci. Signal 12(570) (2019)

  34. Cho, K.O., Hunt, C.A., Kennedy, M.B.: The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9(5), 929–942 (1992)

    Article  CAS  Google Scholar 

  35. Masliah, E., Terry, R.D., Alford, M., DeTeresa, R.: Quantitative immunohistochemistry of synaptophysin in human neocortex: an alternative method to estimate density of presynaptic terminals in paraffin sections. J. Histochem. Cytochem. 38(6), 837–844 (1990)

    Article  CAS  Google Scholar 

  36. Massague, J.: TGF-beta signal transduction. Annu. Rev. Biochem. 67, 753–791 (1998)

    Article  CAS  Google Scholar 

  37. Derynck, R., Zhang, Y.E.: Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425(6958), 577–584 (2003)

    Article  CAS  Google Scholar 

  38. Stegmuller, J., Huynh, M.A., Yuan, Z., Konishi, Y., Bonni, A.: TGFbeta-Smad2 signaling regulates the Cdh1-APC/SnoN pathway of axonal morphogenesis. J. Neurosci. 28(8), 1961–1969 (2008)

    Article  CAS  Google Scholar 

  39. Nakashima, H., Tsujimura, K., Irie, K., Ishizu, M., Pan, M., Kameda, T., Nakashima, K.: Canonical TGF-beta Signaling Negatively Regulates Neuronal Morphogenesis through TGIF/Smad Complex-Mediated CRMP2 Suppression. J. Neurosci. 38(20), 4791–4810 (2018)

    Article  CAS  Google Scholar 

  40. Patel, M.R., Weaver, A.M.: Astrocyte-derived small extracellular vesicles promote synapse formation via fibulin-2-mediated TGF-beta signaling. Cell Rep. 34(10), 108829 (2021)

  41. Munger, J.S., Harpel, J.G., Gleizes, P.E., Mazzieri, R., Nunes, I., Rifkin, D.B.: Latent transforming growth factor-beta: structural features and mechanisms of activation. Kidney Int. 51(5), 1376–1382 (1997)

    Article  CAS  Google Scholar 

  42. Schultz-Cherry, S., Chen, H., Mosher, D.F., Misenheimer, T.M., Krutzsch, H.C., Roberts, D.D., Murphy-Ullrich, J.E.: Regulation of transforming growth factor-beta activation by discrete sequences of thrombospondin 1. J. Biol. Chem. 270(13), 7304–7310 (1995)

    Article  CAS  Google Scholar 

  43. Mizuta, H., Kuga, K., Suzuki, T., Niwa, Y., Dohmae, N., Simizu, S.: Cmannosylation of Rspondin2 activates Wnt/betacatenin signaling and migration activity in human tumor cells. Int. J. Oncol. 54(6), 2127–2138 (2019)

    CAS  PubMed  Google Scholar 

  44. Okamoto, S., Murano, T., Suzuki, T., Uematsu, S., Niwa, Y., Sasazawa, Y., Dohmae, N., Bujo, H., Simizu, S.: Regulation of secretion and enzymatic activity of lipoprotein lipase by C-mannosylation. Biochem. Biophys. Res. Commun. 486(2), 558–563 (2017)

    Article  CAS  Google Scholar 

  45. Yoshimoto, S., Katayama, K., Suzuki, T., Dohmae, N., Simizu, S.: Regulation of N-glycosylation and secretion of Isthmin-1 by its C-mannosylation. Biochim. Biophys. Acta. Gen. Subj. 1865(3), 129840 (2021)

  46. Miura, K., Suzuki, T., Sun, H., Takada, H., Ishizawa, Y., Mizuta, H., Dohmae, N., Simizu, S.: Requirement for C-mannosylation to be secreted and activated a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4). Biochim. Biophys. Acta. Gen. Subj. 1865(3), 129833 (2021)

  47. Murphy-Ullrich, J.E., Suto, M.J.: Thrombospondin-1 regulation of latent TGF-beta activation: A therapeutic target for fibrotic disease. Matrix. Biol. 68–69, 28–43 (2018)

    Article  Google Scholar 

  48. Schultz-Cherry, S., Lawler, J., Murphy-Ullrich, J.E.: The type 1 repeats of thrombospondin 1 activate latent transforming growth factor-beta. J. Biol. Chem. 269(43), 26783–26788 (1994)

    Article  CAS  Google Scholar 

  49. Raulo, E., Tumova, S., Pavlov, I., Pekkanen, M., Hienola, A., Klankki, E., Kalkkinen, N., Taira, T., Kilpelainen, I., Rauvala, H.: The two thrombospondin type I repeat domains of the heparin-binding growth-associated molecule bind to heparin/heparan sulfate and regulate neurite extension and plasticity in hippocampal neurons. J. Biol. Chem. 280(50), 41576–41583 (2005)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported in part by a grant from the Ministry of Education, Culture, Sports, Science, and Technology of Japan JP16H06290 (to Y.Ito); a Wakayama Medical Award for Young Researchers 2013 and 2015 (to M.I.); and the Japan Society for the Promotion of Science Grant-in-Aid 19K09784 to M.I. and 20K09605 to K.N.

Author information

Authors and Affiliations

Authors

Contributions

M.I. performed the experiments. S.M. and Y. Ito prepared the peptides and biotinylated peptides. Y. Ihara contributed experimental materials and tools. K.U. interpreted the data, wrote the paper, and supervised the entire project. K.N. designed the research, performed the experiments, interpreted the data, and wrote the paper. K.N. and Y. Ihara take full responsibility for the entire manuscript. All authors reviewed the results and approved the final version of the manuscript.

Corresponding authors

Correspondence to Kazuchika Nishitsuji or Yoshito Ihara.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishitsuji, K., Ikezaki, M., Manabe, S. et al. Thrombospondin type 1 repeat-derived C-mannosylated peptide attenuates synaptogenesis of cortical neurons induced by primary astrocytes via TGF-β. Glycoconj J 39, 701–710 (2022). https://doi.org/10.1007/s10719-021-10030-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-021-10030-y

Keywords

Navigation