Skip to main content

Advertisement

Log in

Upregulation of Fucosyltransferase 3, 8 and protein O-Fucosyltransferase 1, 2 genes in esophageal cancer stem-like cells (CSLCs)

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Recently, studies have shown that Fucosylation plays an important role in the invasion and metastatic process of CSLCs. Understanding the expression pattern of fucosyltransferase (FUT) genes may help to suggest better-targeted therapy strategies for esophageal squamous cell carcinoma (ESCC). The study aimed to address the expression pattern of FUT gene variants in esophageal CSLCs and parental adherent cells. Sphere formation method was used to enrich CSLCs. Expression of FUT genes was examined in tumor sphere and parental adherent cells using the RT-PCR method and then relative expression of detected variants was performed by the Real-Time PCR method in both groups. The detected FUTs, also, were assessed in fresh ESCC tumors and the matched healthy controls. Analysis of The cell surface carbohydrate Lewis x (LeX, CD15) was performed by flow cytometry. Molecular analysis showed that the expression of FUT 3, 8 and POFUT1, 2 genes in tumorsphere were significantly higher than parental adherent cells. Analysis of fresh ESCC tumor tissues and the matched healthy controls showed that FUT8 and POFUT1, 2 genes in contrast to FUT 3 have higher expression in tumor tissues than controls. Flow cytometric analyses revealed that tumorsphere and their parent cells do not differ significantly in Lewis x surface marker. The present study showed that FUT 3, 8 and POFUT1, 2 genes upregulated in esophageal CSLCs in comparison to adherent cells. Understanding the expression pattern of FUT gene variants may help to suggest better-targeted therapy strategies for ESCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ayyoob, K., Masoud, K., Vahideh, K., Jahanbakhsh, A.: Authentication of newly established human esophageal squamous cell carcinoma cell line (YM-1) using short tandem repeat (STR) profiling method. Tumour Biol. 37, 3197–3204 (2016). https://doi.org/10.1007/s13277-015-4133-4

  2. Baba, Y., Baba, H.: Gene-expression signature may be useful for the prediction of lymph node metastasis in esophageal cancer. Ann Transl Med. 6, 230 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  3. Becker, D.J., Lowe, J.B.: Fucose: biosynthesis and biological function in mammals. Glycobiology. 13, 41r–53r (2003)

    Article  CAS  PubMed  Google Scholar 

  4. Blanas, A., Sahasrabudhe, N.M., Rodríguez, E., Van Kooyk, Y., Van Vliet, S.J.: Fucosylated antigens in Cancer: an Alliance toward tumor progression, metastasis, and resistance to chemotherapy. Front. Oncol. 8, 39–39 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chatterjee, S.K., Bhattacharya, M., Barlow, J.J.: Glycosyltransferase and glycosidase activities in ovarian cancer patients. Cancer Res. 39, 1943–1951 (1979)

    CAS  PubMed  Google Scholar 

  6. Chen, C.Y., Jan, Y.H., Juan, Y.H., Yang, C.J., Huang, M.S., Yu, C.J., Yang, P.C., Hsiao, M., Hsu, T.L., Wong, C.H.: Fucosyltransferase 8 as a functional regulator of nonsmall cell lung cancer. Proc. Natl. Acad. Sci. U. S. A. 110, 630–635 (2013)

    Article  CAS  PubMed  Google Scholar 

  7. Dean, M., Fojo, T., Bates, S.: Tumour stem cells and drug resistance. Nat. Rev. Cancer. 5, 275–284 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. Desiderio, V., Papagerakis, P., Tirino, V., Zheng, L., Matossian, M., Prince, M.E., Paino, F., Mele, L., Papaccio, F., Montella, R., Papaccio, G., Papagerakis, S.: Increased fucosylation has a pivotal role in invasive and metastatic properties of head and neck cancer stem cells. Oncotarget. 6, 71–84 (2015)

    Article  PubMed  Google Scholar 

  9. Fan, J., Xie, T.P., Liu, Y.J., Hu, Y., Gu, T.J.: The expression of human alpha(1,3) Fucosyltransferase in human liver Cancer by in situ hybridization. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). 28, 568–571 (1996)

    CAS  Google Scholar 

  10. Gholipour, M., Islami, F., Roshandel, G., Khoshnia, M., Badakhshan, A., Moradi, A., Malekzadeh, R.: Esophageal Cancer in Golestan Province, Iran: A review of genetic susceptibility and environmental risk factors. Middle East J Dig Dis. 8, 249–266 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hirakawa, M., Takimoto, R., Tamura, F., Yoshida, M., Ono, M., Murase, K., Sato, Y., Osuga, T., Sato, T., Iyama, S., Miyanishi, K., Takada, K., Hayashi, T., Kobune, M., Kato, J.: Fucosylated TGF-beta receptors transduces a signal for epithelial-mesenchymal transition in colorectal cancer cells. Br. J. Cancer. 110, 156–163 (2014)

    Article  CAS  PubMed  Google Scholar 

  12. Hutchinson, W.L., Du, M.Q., Johnson, P.J., Williams, R.: Fucosyltransferases: differential plasma and tissue alterations in hepatocellular carcinoma and cirrhosis. Hepatology. 13, 683–688 (1991)

    Article  CAS  PubMed  Google Scholar 

  13. Ito, Y., Miyauchi, A., Yoshida, H., Uruno, T., Nakano, K., Takamura, Y., Miya, A., Kobayashi, K., Yokozawa, T., Matsuzuka, F., Taniguchi, N., Matsuura, N., Kuma, K., Miyoshi, E.: Expression of alpha1,6-fucosyltransferase (FUT8) in papillary carcinoma of the thyroid: its linkage to biological aggressiveness and anaplastic transformation. Cancer Lett. 200, 167–172 (2003)

    Article  CAS  PubMed  Google Scholar 

  14. Jiang, Y., Liu, Z., Xu, F., Dong, X., Cheng, Y., Hu, Y., Gao, T., Liu, J., Yang, L., Jia, X., Qian, H., Wen, T., An, G.: Aberrant O-glycosylation contributes to tumorigenesis in human colorectal cancer. J. Cell. Mol. Med. 22, 4875–4885 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lai, T.-Y., Chen, I.J., Lin, R.-J., Liao, G.-S., Yeo, H.-L., Ho, C.-L., Wu, J.-C., Chang, N.-C., Lee, A.C.-L., Yu, A.L.: Fucosyltransferase 1 and 2 play pivotal roles in breast cancer cells. Cell Death Dis. 5, 74–74 (2019)

    Article  CAS  Google Scholar 

  16. Lao-Sirieix, P., Caldas, C., Fitzgerald, R.C.: Genetic predisposition to gastro-oesophageal cancer. Curr. Opin. Genet. Dev. 20, 210–217 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. Leng, Q., Tsou, J.H., Zhan, M., Jiang, F.: Fucosylation genes as circulating biomarkers for lung cancer. J. Cancer Res. Clin. Oncol. 144, 2109–2115 (2018)

    Article  CAS  PubMed  Google Scholar 

  18. Liu, Y.C., Yen, H.Y., Chen, C.Y., Chen, C.H., Cheng, P.F., Juan, Y.H., Chen, C.H., Khoo, K.H., Yu, C.J., Yang, P.C., Hsu, T.L., Wong, C.H.: Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proc. Natl. Acad. Sci. U. S. A. 108, 11332–11337 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lowe, J.B.: Glycosylation in the control of selectin counter-receptor structure and function. Immunol. Rev. 186, 19–36 (2002)

    Article  CAS  PubMed  Google Scholar 

  20. Ma, B., Simala-Grant, J.L., Taylor, D.E.: Fucosylation in prokaryotes and eukaryotes. Glycobiology. 16, 158r–184r (2006)

    Article  CAS  PubMed  Google Scholar 

  21. Ma, L., Dong, P., Liu, L., Gao, Q., Duan, M., Zhang, S., Chen, S., Xue, R., Wang, X.: Overexpression of protein O-fucosyltransferase 1 accelerates hepatocellular carcinoma progression via the notch signaling pathway. Biochem. Biophys. Res. Commun. 473, 503–510 (2016)

    Article  CAS  PubMed  Google Scholar 

  22. Mas, E., Pasqualini, E., Caillol, N., El Battari, A., Crotte, C., Lombardo, D., Sadoulet, M.O.: Fucosyltransferase activities in human pancreatic tissue: comparative study between cancer tissues and established tumoral cell lines. Glycobiology. 8, 605–613 (1998)

    Article  CAS  PubMed  Google Scholar 

  23. Mazo, I.B., Massberg, S., Von Andrian, U.H.: Hematopoietic stem and progenitor cell trafficking. Trends Immunol. 32, 493–503 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miyoshi, E., Moriwaki, K., Nakagawa, T.: Biological function of fucosylation in cancer biology. J. Biochem. 143, 725–729 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. Mondal, N., Dykstra, B., Lee, J., Ashline, D.J., Reinhold, V.N., Rossi, D.J., Sackstein, R.: Distinct human alpha(1,3)-fucosyltransferases drive Lewis-X/sialyl Lewis-X assembly in human cells. J. Biol. Chem. 293, 7300–7314 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Muinelo-Romay, L., Vazquez-Martin, C., Villar-Portela, S., Cuevas, E., Gil-Martin, E., Fernandez-Briera, A.: Expression and enzyme activity of alpha(1,6)fucosyltransferase in human colorectal cancer. Int. J. Cancer. 123, 641–646 (2008)

    Article  CAS  PubMed  Google Scholar 

  27. Narimatsu, H.: α3/4-Fucosyltransferase (FUT3, Lewis enzyme). In: Taniguchi, N., Honke, K., Fukuda, M., Clausen, H., Furukawa, K., Hart, G.W., Kannagi, R., Kawasaki, T., Kinoshita, T., Muramatsu, T., Saito, M., Shaper, J.H., Sugahara, K., Tabak, L.A., Van Den Eijnden, D.H., Yanagishita, M., Dennis, J.W., Furukawa, K., Hirabayashi, Y., Kawakita, M., Kimata, K., Lindahl, U., Narimatsu, H., Schachter, H., Stanley, P., Suzuki, A., Tsuji, S., Yamashita, K. (eds.) Handbook of Glycosyltransferases and Related Genes. Springer Japan, Tokyo (2002)

    Google Scholar 

  28. Nystrom, K., Grahn, A., Lindh, M., Brytting, M., Mandel, U., Larson, G., Olofsson, S.: Virus-induced transcriptional activation of host FUT genes associated with neo-expression of ley in cytomegalovirus-infected and sialyl-Lex in varicella-zoster virus-infected diploid human cells. Glycobiology. 17, 355–366 (2007)

    Article  PubMed  Google Scholar 

  29. Okajima, T., Irvine, K.D.: Regulation of notch signaling by o-linked fucose. Cell. 111, 893–904 (2002)

    Article  CAS  PubMed  Google Scholar 

  30. Padro, M., Cobler, L., Garrido, M., De Bolos, C.: Down-regulation of FUT3 and FUT5 by shRNA alters Lewis antigens expression and reduces the adhesion capacities of gastric cancer cells. Biochim. Biophys. Acta. 1810, 1141–1149 (2011)

    Article  CAS  PubMed  Google Scholar 

  31. Rappa, G., Mercapide, J., Anzanello, F., Prasmickaite, L., Xi, Y., Ju, J., Fodstad, O., Lorico, A.: Growth of cancer cell lines under stem cell-like conditions has the potential to unveil therapeutic targets. Exp. Cell Res. 314, 2110–2122 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saldova, R., Piccard, H., Perez-Garay, M., Harvey, D.J., Struwe, W.B., Galligan, M.C., Berghmans, N., Madden, S.F., Peracaula, R., Opdenakker, G., Rudd, P.M.: Increase in sialylation and branching in the mouse serum N-glycome correlates with inflammation and ovarian tumour progression. PLoS One. 8, e71159 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. seidmann, L., Anspach, L., Roth, W.: The embryo-placental CD15-positive “vasculogenic zones” as a source of propranolol-sensitive pediatric vascular tumors. Placenta. 38, 93–99 (2016)

    Article  CAS  PubMed  Google Scholar 

  34. Singh, A., Settleman, J.: EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene. 29, 4741–4751 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Su, H., Hu, N., Yang, H.H., Wang, C., Takikita, M., Wang, Q.H., Giffen, C., Clifford, R., Hewitt, S.M., Shou, J.Z., Goldstein, A.M., Lee, M.P., Taylor, P.R.: Global gene expression profiling and validation in esophageal squamous cell carcinoma and its association with clinical phenotypes. Clin. Cancer Res. 17, 2955–2966 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Takahashi, M., Yokoe, S., Asahi, M., Lee, S.H., Li, W., Osumi, D., Miyoshi, E., Taniguchi, N.: N-glycan of ErbB family plays a crucial role in dimer formation and tumor promotion. Biochim. Biophys. Acta. 1780, 520–524 (2008)

    Article  CAS  PubMed  Google Scholar 

  37. Tirino, V., Desiderio, V., Paino, F., Papaccio, G., De Rosa, M.: Methods for cancer stem cell detection and isolation. Methods Mol. Biol. 879, 513–529 (2012)

    Article  CAS  PubMed  Google Scholar 

  38. Vajaria, B.N., Patel, P.S.: Glycosylation: a hallmark of cancer? Glycoconj. J. 34, 147–156 (2017)

    Article  CAS  PubMed  Google Scholar 

  39. Wang, X., Gu, J., Ihara, H., Miyoshi, E., Honke, K., Taniguchi, N.: Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling. J. Biol. Chem. 281, 2572–2577 (2006)

    Article  CAS  PubMed  Google Scholar 

  40. Wang, X., Chen, J., Li, Q.K., Peskoe, S.B., Zhang, B., Choi, C., Platz, E.A., Zhang, H.: Overexpression of α (1,6) fucosyltransferase associated with aggressive prostate cancer. Glycobiology. 24, 935–944 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yakubu, R.R., Weiss, L.M., Silmon De Monerri, N.C.: Post-translational modifications as key regulators of apicomplexan biology: insights from proteome-wide studies. Mol. Microbiol. 107, 1–23 (2018)

    Article  CAS  PubMed  Google Scholar 

  42. Yang, X., Liu, S., Yan, Q.: Role of fucosyltransferase IV in epithelial-mesenchymal transition in breast cancer cells. Cell Death Dis. 4, e735 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yu, C. C., Lo, W. L., Chen, Y. W., Huang, P. I., Hsu, H. S., Tseng, L. M., Hung, S. C., Kao, S. Y., Chang, C. J. & Chiou, S. H.. Bmi-1 regulates snail expression and promotes metastasis ability in head and neck squamous Cancer-derived ALDH1 positive cells. J Oncol, 2011 (2011)

  44. Zhang, Z., Wuhrer, M., Holst, S.: Serum sialylation changes in cancer. Glycoconj. J. 35, 139–160 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao, Y.P., Xu, X.Y., Fang, M., Wang, H., You, Q., Yi, C.H., Ji, J., Gu, X., Zhou, P.T., Cheng, C., Gao, C.F.: Decreased core-fucosylation contributes to malignancy in gastric cancer. PLoS One. 9, e94536 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Masoud khoshnia for providing ESCC and normal samples, and Dr. seyed Mehdi Jafari for editing the manuscript. Special thanks to the patients with esophageal cancer who participated in this study. This work was supported by the Golestan University of Medical Sciences (research grant number: 970308034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jahanbakhsh Asadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghzadeh, Z., Khosravi, A., Jazi, M.S. et al. Upregulation of Fucosyltransferase 3, 8 and protein O-Fucosyltransferase 1, 2 genes in esophageal cancer stem-like cells (CSLCs). Glycoconj J 37, 319–327 (2020). https://doi.org/10.1007/s10719-020-09917-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-020-09917-z

Keywords

Navigation