Skip to main content
Log in

A HPLC-based glycoanalytical protocol allows the use of natural O-glycans derived from glycoproteins as substrates for glycosidase discovery from microbial culture

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Many disorders are characterised by changes in O-glycosylation, but analysis of O-glycosylation has been limited by the availability of specific endo- and exo-glycosidases. As a result chemical methods are employed. However, these may give rise to glycan degradation, so therefore novel O-glycosidases are needed. Artificial substrates do not always identify every glycosidase activity present in an extract. To overcome this, an HPLC-based protocol for glycosidase identification from microbial culture was developed using natural O-glycans and O-glycosylated glycoproteins (porcine stomach mucin and fetuin) as substrates. O-glycans were released by ammonia-based β-elimination for use as substrates, and the bacterial culture supernatants were subjected to ultrafiltration to separate the proteins from glycans and low molecular size molecules. Two bacterial cultures, the psychrotroph Arthrobacter C1-1 and a Corynebacterium isolate, were examined as potential sources of novel glycosidases. Arthrobacter C1-1 culture contained a β-galactosidase and N-acetyl-β-glucosaminidase when assayed using 4-methylumbelliferyl substrates, but when defucosylated O-glycans from porcine stomach mucin were used as substrate, the extract did not cleave β-linked galactose or N-acetylglucosamine. Sialidase activity was identified in Corynebacterium culture supernatant, which hydrolysed sialic acid from fetuin glycans. When both culture supernatants were assayed using the glycoproteins as substrate, neither contained endoglycosidase activity. This method may be applied to investigate a microbial or other extract for glycosidase activity, and has potential for scale-up on high-throughput platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

4-MU:

4-methylumbelliferyl

PSM:

Porcine stomach mucin

GU:

Glucose unit

NP-HPLC:

Normal phase HPLC

X-Neu:

5-bromo-4-chloro-3-indolyl-α-D-N-acetylneuraminic acid sodium salt

References

  1. Storr, S.J., Royle, L., Chapman, C.J., Hamid, U.M., Robertson, J.F., Murray, A., Dwek, R.A., Rudd, P.M.: The O-linked glycosylation of secretory/shed MUC1 from an advanced breast cancer patient’s serum. Glycobiology 18, 456–462 (2008)

    Article  PubMed  CAS  Google Scholar 

  2. Xia, B., Royall, J.A., Damera, G., Sachdev, G.P., Cummings, R.D.: Altered O-glycosylation and sulfation of airway mucins associated with cystic fibrosis. Glycobiology 15, 747–775 (2005)

    Article  PubMed  CAS  Google Scholar 

  3. Wopereis, S., Abd Hamid, U.M., Critchley, A., Royle, L., Dwek, R.A., Morava, E., Leroy, J.G., Wilcken, B., Lagerwerf, A.J., Huijben, K.M., Lefeber, D.J., Rudd, P.M.: Abnormal glycosylation with hypersialylated O-glycans in patients with Sialuria. Biochim. Biophys. Acta 1762, 598–607 (2006)

    Article  PubMed  CAS  Google Scholar 

  4. Tarp, M.A., Clausen, H.: Mucin-type O-glycosylation and its potential use in drug and vaccine development. Biochim. Biophys. Acta 1780, 546–563 (2008)

    Article  PubMed  CAS  Google Scholar 

  5. Liu, L., Telford, J.E., Knezevic, A., Rudd, P.M.: High-throughput glycoanalytical technology for systems glycobiology. Biochem. Soc. Trans. 38, 1374–1377 (2010)

    Article  PubMed  CAS  Google Scholar 

  6. Royle, L., Radcliffe, C.M., Dwek, R.A., Rudd, P.M.: Detailed structural analysis of N-glycans released from glycoproteins in SDS-PAGE gel bands using HPLC combined with exoglycosidase array digestions. Methods Mol. Biol. 347, 125–144 (2006)

    PubMed  CAS  Google Scholar 

  7. Brooks, M.M., Savage, A.W.: The substrate specificity of the enzyme endo-alpha-N-acetyl-D-galactosaminidase from Diplococcus pneumonia. Glycoconj. J. 14, 183–190 (1997)

    Article  PubMed  CAS  Google Scholar 

  8. Fan, J.Q., Yamamoto, K., Matsumoto, Y., Hirabayashi, Y., Kumagai, H., Tochikura, T.: Action of endo-alpha-N-acetylgalactosaminidase from Alcaligenes sp. on amino acid O-glycans: comparison with the enzyme from Diplococcus pneumoniae. Biochem. Biophys. Res. Commun. 169, 751–757 (1990)

    Article  PubMed  CAS  Google Scholar 

  9. Ashida, H., Yamamoto, K., Kumagai, H.: Trypsin inhibitory activity of bovine fetuin de-O-glycosylated by endo-alpha-N-acetylgalactosaminidase. Biosci. Biotechnol. Biochem. 64, 2266–2268 (2000)

    Article  PubMed  CAS  Google Scholar 

  10. Koutsioulis, D., Landry, D., Guthrie, E.P.: Novel endo-alpha-N-acetylgalactosaminidases with broader substrate specificity. Glycobiology 18, 799–805 (2008)

    Article  PubMed  CAS  Google Scholar 

  11. Goda, H.M., Ushiqusa, K., Ito, H., Okino, N., Narimatsu, H., Ito, M.: Molecular cloning, expression and characterization of a novel endo-alpha-N-acetylgalactosaminidase from Enterococcus faecalis. Biochem. Biophys. Res. Commun. 375, 441–446 (2008)

    Article  PubMed  Google Scholar 

  12. Patel, T., Bruce, J., Merry, A., Bigge, C., Wormald, M., Jaques, A., Parekh, R.: Use of hydrazine to release in intact and unreduced form both N- and O-linked oligosaccharides from glycoproteins. Biochemistry 32, 679–693 (1993)

    Article  PubMed  CAS  Google Scholar 

  13. Huang, Y., Mechref, Y., Novotny, M.V.: Microscale nonreductive release of O-linked glycans for subsequent analysis through MALDI mass spectrometry and capillary electrophoresis. Anal. Chem. 73, 6063–6069 (2001)

    Article  PubMed  CAS  Google Scholar 

  14. Kanamori, A., Inoue, S., Iwasaki, M., Kitajima, K., Kawai, G., Yokoyama, S., Inoue, Y.: Deaminated neuraminic acid-rich glycoprotein of rainbow trout egg vitelline envelope. Occurrence of a novel alpha-2,8-linked oligo (deaminated neuraminic acid) structure in O-linked glycan chains. J. Biol. Chem. 265, 21811–21819 (1990)

    PubMed  CAS  Google Scholar 

  15. Kozak, R.P., Royle, L., Gardner, R.A., Fernandes, D.L., Wuhrer, M.: Suppression of peeling during the release of O-glycans by hydrazinolysis. Anal. Biochem. 423, 119–128 (2012)

    Article  PubMed  CAS  Google Scholar 

  16. Royle, L., Mattu, T.S., Hart, E., Langridge, J.I., Merry, A.H., Murphy, N., Harvey, D.J., Dwek, R.A., Rudd, P.M.: An analytical and structural database provides a strategy for sequencing O-glycans from microgram quantities of glycoproteins. Anal. Biochem. 304, 70–90 (2002)

    Article  PubMed  CAS  Google Scholar 

  17. Ashida, H., Miyake, A., Kiyohara, M., Wada, J., Yoshida, E., Kumagai, H., Katayama, T., Yamamoto, K.: Two distinct alpha-L-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates. Glycobiology 19, 1010–1017 (2009)

    Article  PubMed  CAS  Google Scholar 

  18. Benešová, E., Marková, M., Králová, B.: α-Glucosidase and β-glucosidase from psychrotrophic strain Arthrobacter sp. C2-2. Czech J. Food Sci. 23, 116–120 (2005)

    Google Scholar 

  19. Maischberger, E., Irwin, J.A., Carrington, S.D., Duggan, V.E.: Equine post-breeding endometritis: a review. Ir. Vet. J. 61, 163–168 (2008)

    Article  PubMed  CAS  Google Scholar 

  20. Altschul, S., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)

    PubMed  CAS  Google Scholar 

  21. Cole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., Kulam-Syed-Mohideen, A.S., McGarrell, D.M., Marsh, T., Garrity, G.M., Tiedje, J.M.: The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141–D145 (2009)

    Article  PubMed  CAS  Google Scholar 

  22. Irwin, J.A., Morrissey, P.E.W., Ryan, J.P., Walshe, A., O’Neill, S.M., Carrington, S.D., Matthews, E., Fitzpatrick, E., Mulcahy, G., Corfield, A.P., Dalton, J.P.: Glycosidase activity in the excretory-secretory products of the liver fluke, Fasciola hepatica. Parasitology 129, 465–472 (2004)

    Article  PubMed  CAS  Google Scholar 

  23. Goso, Y., Tsubokawa, D., Ishihara, K.: Evaluation of conditions for release of mucin-type oligosaccharides from glycoprotein by hydrazine gas treatment. J. Biochem. 145, 739–749 (2009)

    Article  PubMed  CAS  Google Scholar 

  24. Jones, B.V., Sun, F., Marchesi, J.R.: Using skimmed milk agar to functionally screen a gut metagenomic library for proteases may lead to false positives. Lett. Appl. Microbiol. 45, 418–420 (2007)

    Article  PubMed  CAS  Google Scholar 

  25. Guo, Z., Shao, N.: Glycopeptide and glycoprotein synthesis involving unprotected carbohydrate building blocks. Med. Res. Rev. 25, 655–678 (2005)

    Article  PubMed  CAS  Google Scholar 

  26. Matsushita, T., Sadamoto, R., Ohyabu, N., Nakata, H., Fumoto, M., Fujitani, N., Takegawa, Y., Sakamoto, T., Kurogochi, M., Hinou, H., Shimizu, H., Ito, T., Naruchi, K., Togame, H., Takemoto, H., Kondo, H., Nishimura, S.: Functional neoglycopeptides: synthesis and characterization of a new class of MUC1 glycoprotein models having core 2-based O-glycan and complex-type N-glycan chains. Biochemistry 48, 11117–11133 (2009)

    Article  PubMed  CAS  Google Scholar 

  27. Carrington, S.D., Irwin, J.A., Liu, L., Rudd, P.M., Matthews, E., Corfield, A.P.: Analysing mucin degradation. Methods Mol. Biol. 842, 191–214 (2012)

    Article  PubMed  CAS  Google Scholar 

  28. Royle, L., Campbell, M.P., Radcliffe, C.M., White, D.M., Harvey, D.J., Abrahams, J.L., Kim, Y.G., Henry, G.W., Shadick, N.A., Weinblatt, M.E., Lee, D.M., Rudd, P.M., Dwek, R.A.: HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal. Biochem. 376, 1–12 (2008)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank The National Institute for Bioprocessing Research and Training (NIBRT) for funding for this project. Eva Maischberger and Raúl Miranda CasoLuengo were funded by a grant from the Irish Department of Agriculture, Fisheries and Food Stimulus Fund (RSF 06 408).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane A. Irwin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Tharmalingam, T., Maischberger, E. et al. A HPLC-based glycoanalytical protocol allows the use of natural O-glycans derived from glycoproteins as substrates for glycosidase discovery from microbial culture. Glycoconj J 30, 791–800 (2013). https://doi.org/10.1007/s10719-013-9483-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-013-9483-9

Keywords

Navigation