Skip to main content

Advertisement

Log in

Site-specific N-glycosylation identification of recombinant human lectin-like oxidized low density lipoprotein receptor-1 (LOX-1)

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Human LOX-1/OLR 1 plays a key role in atherogenesis and endothelial dysfunction. The N-glycosylation of LOX-1 has been shown to affect its biological functions in vivo and modulate the pathogenesis of atherosclerosis. However, the N-glycosylation pattern of LOX-1 has not been described yet. The present study was aimed at elucidating the N-glycosylation of recombinant human LOX-1 with regard to N-glycan profile and N-glycosylation sites. Here, an approach using nonspecific protease (Pronase E) digestion followed by MALDI-QIT-TOF MS and multistage MS (MS3) analysis is explored to obtain site-specific N-glycosylation information of recombinant human LOX-1, in combination with glycan structure confirmation through characterizing released glycans using tandem MS. The results reveal that N-glycans structures as well as their corresponding attached site of LOX-1 can be identified simultaneously by direct MS analysis of glycopeptides from non-specific protease digestion. With this approach, one potential glycosylation site of recombinant human LOX-1 on Asn139 is readily identified and found to carry heterogeneous complex type N-glycans. In addition, manual annotation of multistage MS data utilizing diagnostic ions, which were found to be particularly useful in defining the structure of glycopeptides and glycans was addressed for proper spectra interpretation. The findings described herein will shed new light on further research of the structure-function relationships of LOX-1 N-glycan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

Asn:

Asparagine

Asp:

Aspartate

DHB:

2 5-dihydroxybenzoic acid

DTT:

Dithiothreitol

ESI:

Electrospray ionization

Fuc:

L-fucose

Gal:

D-galactose

GlcNAc:

N-acetyl-D-glucosamine

Hex:

Hexose

HexNAc:

N-acetylhexosamine

IAA:

Iodacetamide

LOX-1:

Lectin-like oxidized low density lipoprotein receptor-1

MALDI:

Matrix assisted laser desorption/ionization

Man:

D-mannose

MS:

Mass spectrometry

PGC:

Porous graphic carbon

PNGase F:

Peptide N-Glycosidase F

QIT:

Quadropole ion trap

RT:

Room temperature

SDS-PAGE:

Dodecyl sulfate sodium salt-polyacrylamide gel electrophoresis

SPE:

Solid-phase extraction

TFA:

Trifluoroacetic acid

TOF:

Time of flight

v/v :

Volume/volume

w/w :

Weight/weight

References

  1. Ross, R.: The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362, 801–809 (1993)

    Article  PubMed  CAS  Google Scholar 

  2. Witztum, J.L., Steinberg, D.: Role of oxidized low density lipoprotein in atherogenesis. J. Clin. Invest. 88, 1785–1792 (1991)

    Article  PubMed  CAS  Google Scholar 

  3. Sawamura, T., Kume, N., Aoyama, T., Moriwaki, H., Hoshikawa, H., Aiba, Y., Tanaka, T., Miwa, S., Katsura, Y., Kita, T., Masaki, T.: An endothelial receptor for oxidized low-density lipoprotein. Nature 386, 73–77 (1997)

    Article  PubMed  CAS  Google Scholar 

  4. Kataoka, H., Kume, N., Miyamoto, S., Minami, M., Murase, T., Sawamura, T., Masaki, T., Hashimoto, N., Kita, T.: Biosynthesis and post-translational processing of lectin-like oxidized low density lipoprotein receptor-1 (LOX-1). N-linked glycosylation affects cell-surface expression and ligand binding. J. Biol. Chem. 275, 6573–6579 (2000)

    Article  PubMed  CAS  Google Scholar 

  5. Apweiler, R., Hermjakob, H., Sharon, N.: On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta 1473, 4–8 (1999)

    Article  PubMed  CAS  Google Scholar 

  6. Varki, A.: Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130 (1993)

    Article  PubMed  CAS  Google Scholar 

  7. Moens, S., Vanderleyden, J.: Glycoproteins in prokaryotes. Arch. Microbiol. 168, 169–175 (1997)

    Article  PubMed  CAS  Google Scholar 

  8. Dennis, J.W., Granovsky, M., Warren, C.E.: Protein glycosylation in development and disease. Bioessays 21, 412–421 (1999)

    Article  PubMed  CAS  Google Scholar 

  9. Grunewald, S., Matthijs, G., Jaeken, J.: Congenital disorders of glycosylation: a review. Pediatr. Res. 52, 618–624 (2002)

    PubMed  Google Scholar 

  10. Geyer, H., Geyer, R.: Strategies for analysis of glycoprotein glycosylation. Biochim. Biophys. Acta 1764, 1853–1869 (2006)

    Article  PubMed  CAS  Google Scholar 

  11. Medzihradszky, K.F.: Characterization of protein N-glycosylation. Methods Enzymol. 405, 116–138 (2005)

    Article  PubMed  CAS  Google Scholar 

  12. Budnik, B.A., Lee, R.S., Steen, J.A.: Global methods for protein glycosylation analysis by mass spectrometry. Biochim. Biophys. Acta 1764, 1870–1880 (2006)

    Article  PubMed  CAS  Google Scholar 

  13. Dalpathado, D.S., Desaire, H.: Glycopeptide analysis by mass spectrometry. Analyst 133, 731–738 (2008)

    Article  PubMed  CAS  Google Scholar 

  14. Wuhrer, M., Koeleman, C.A., Hokke, C.H., Deelder, A.M.: Protein glycosylation analyzed by normal-phase nano-liquid chromatography–mass spectrometry of glycopeptides. Anal. Chem. 77, 886–894 (2005)

    Article  PubMed  CAS  Google Scholar 

  15. Wang, P., Li, G., Granados, R.R.: Identification of two new peritrophic membrane proteins from larval Trichoplusia ni: structural characteristics and their functions in the protease rich insect gut. Insect Biochem. Mol. Biol. 34, 215–227 (2004)

    Article  PubMed  Google Scholar 

  16. Godl, K., Johansson, M.E., Lidell, M.E., Morgelin, M., Karlsson, H., Olson, F.J., Gum Jr., J.R., Kim, Y.S., Hansson, G.C.: The N terminus of the MUC2 mucin forms trimers that are held together within a trypsin-resistant core fragment. J. Biol. Chem. 277, 47248–47256 (2002)

    Article  PubMed  CAS  Google Scholar 

  17. Barratt, J., Smith, A.C., Feehally, J.: The pathogenic role of IgA1 O-linked glycosylation in the pathogenesis of IgA nephropathy. Nephrology (Carlton) 12, 275–284 (2007)

    Article  CAS  Google Scholar 

  18. Larsen, M.R., Hojrup, P., Roepstorff, P.: Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry. Mol. Cell. Proteomics 4, 107–119 (2005)

    PubMed  CAS  Google Scholar 

  19. Sweeney, P.J., Walker, J.M.: Pronase (EC 3.4.24.4). Methods Mol. Biol. 16, 271–276 (1993)

    PubMed  CAS  Google Scholar 

  20. An, H.J., Peavy, T.R., Hedrick, J.L., Lebrilla, C.B.: Determination of N-glycosylation sites and site heterogeneity in glycoproteins. Anal. Chem. 75, 5628–5637 (2003)

    Article  PubMed  CAS  Google Scholar 

  21. Yu, Y.Q., Fournier, J., Gilar, M., Gebler, J.C.: Identification of N-linked glycosylation sites using glycoprotein digestion with pronase prior to MALDI tandem time-of-flight mass spectrometry. Anal. Chem. 79, 1731–1738 (2007)

    Article  PubMed  CAS  Google Scholar 

  22. Froehlich, J.W., Barboza, M., Chu, C., Lerno, L.A., Jr., Clowers, B.H., Zivkovic, A.M., German, J.B., Lebrilla, C.B.: Nano-LC-MS/MS of glycopeptides produced by nonspecific proteolysis enables rapid and extensive site-specific glycosylation determination. Anal. Chem. 83, 5541–5547

  23. Carlstedt, I., Lindgren, H., Sheehan, J.K.: The macromolecular structure of human cervical-mucus glycoproteins - studies on fragments obtained after reduction of disulfide bridges and after subsequent trypsin digestion. Biochem. J. 213, 427–435 (1983)

    PubMed  CAS  Google Scholar 

  24. Asker, N., Axelsson, M.A.B., Olofsson, S.O., Hansson, G.C.: Dimerization of the human MUC2 mucin in the endoplasmic reticulum is followed by a N-glycosylation-dependent transfer of the mono- and dimers to the Golgi apparatus. J. Biol. Chem. 273, 18857–18863 (1998)

    Article  PubMed  CAS  Google Scholar 

  25. Ding, L., Kawatoh, E., Tanaka, K., Smith, A.J., Kumashiro, S.: High efficiency MALDI-QIT-ToF mass spectrometer. In: Munro, E. (ed.) Charged Particle Optics Iv, vol. 3777. Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie), pp. 144–155 (1999)

  26. Martin, R.L., Brancia, F.L.: Analysis of high mass peptides using a novel matrix-assisted laser desorption/ionisation quadrupole ion trap time-of-flight mass spectrometer. Rapid Commun. Mass Spectrom. 17, 1358–1365 (2003)

    Article  PubMed  CAS  Google Scholar 

  27. Neue, K., Mormann, M., Peter-Katalinic, J., Pohlentz, G.: Elucidation of glycoprotein structures by unspecific proteolysis and direct nanoESI mass spectrometric analysis of ZIC-HILIC-enriched glycopeptides. J. Proteome Res. 10, 2248–2260

  28. Wuhrer, M., Catalina, M.I., Deelder, A.M., Hokke, C.H.: Glycoproteomics based on tandem mass spectrometry of glycopeptides. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 849, 115–128 (2007)

    Article  PubMed  CAS  Google Scholar 

  29. Wu, Y., Mechref, Y., Klouckova, I., Mayampurath, A., Novotny, M.V., Tang, H.: Mapping site-specific protein N-glycosylations through liquid chromatography/mass spectrometry and targeted tandem mass spectrometry. Rapid Commun. Mass Spectrom. 24, 965–972

  30. Gorman, J.J., Wallis, T.P., Pitt, J.J.: Protein disulfide bond determination by mass spectrometry. Mass Spectrom. Rev. 21, 183–216 (2002)

    Article  PubMed  CAS  Google Scholar 

  31. Uematsu, R., Furukawa, J., Nakagawa, H., Shinohara, Y., Deguchi, K., Monde, K., Nishimura, S.: High throughput quantitative glycomics and glycoform-focused proteomics of murine dermis and epidermis. Mol. Cell. Proteomics 4, 1977–1989 (2005)

    Article  PubMed  CAS  Google Scholar 

  32. Wuhrer, M., Hokke, C.H., Deelder, A.M.: Glycopeptide analysis by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry reveals novel features of horseradish peroxidase glycosylation. Rapid Commun. Mass Spectrom. 18, 1741–1748 (2004)

    Article  PubMed  CAS  Google Scholar 

  33. Kurogochi, M., Nishimura, S.: Structural characterization of N-glycopeptides by matrix-dependent selective fragmentation of MALDI-TOF/TOF tandem mass spectrometry. Anal. Chem. 76, 6097–6101 (2004)

    Article  PubMed  CAS  Google Scholar 

  34. Krokhin, O., Ens, W., Standing, K.G., Wilkins, J., Perreault, H.: Site-specific N-glycosylation analysis: matrix-assisted laser desorption/ionization quadrupole-quadrupole time-of-flight tandem mass spectral signatures for recognition and identification of glycopeptides. Rapid Commun. Mass Spectrom. 18, 2020–2030 (2004)

    Article  PubMed  CAS  Google Scholar 

  35. Bykova, N.V., Rampitsch, C., Krokhin, O., Standing, K.G., Ens, W.: Determination and characterization of site-specific N-glycosylation using MALDI-Qq-TOF tandem mass spectrometry: case study with a plant protease. Anal. Chem. 78, 1093–1103 (2006)

    Article  PubMed  CAS  Google Scholar 

  36. Takemori, N., Komori, N., Matsumoto, H.: Highly sensitive multistage mass spectrometry enables small-scale analysis of protein glycosylation from two-dimensional polyacrylamide gels. Electrophoresis 27, 1394–1406 (2006)

    Article  PubMed  CAS  Google Scholar 

  37. Domon, B., Costello, C.E.: A systematic nomenclature for carbohydrate fragmentations in FAB-MS MS spectra of glycoconjugates. Glycoconj. J. 5, 397–409 (1988)

    Article  CAS  Google Scholar 

  38. Harvey, D.J.: Fragmentation of negative ions from carbohydrates: part 3. Fragmentation of hybrid and complex N-linked glycans. J. Am. Soc. Mass Spectrom. 16, 647–659 (2005)

    Article  PubMed  CAS  Google Scholar 

  39. Montesino, R., Toledo, J.R., Sanchez, O., Zamora, Y., Barrera, M., Royle, L., Rudd, P.M., Dwek, R.A., Harvey, D.J., Cremata, J.A.: N-glycosylation pattern of E2 glycoprotein from classical swine fever virus. J. Proteome Res. 8, 546–555 (2009)

    Article  PubMed  CAS  Google Scholar 

  40. Harvey, D.J., Bateman, R.H., Green, M.R.: High-energy collision-induced fragmentation of complex oligosaccharides ionized by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 32, 167–187 (1997)

    Article  PubMed  CAS  Google Scholar 

  41. Harvey, D.J.: Structural determination of N-linked glycans by matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. Proteomics 5, 1774–1786 (2005)

    Article  PubMed  CAS  Google Scholar 

  42. Harvey, D.J., Baruah, K., Scanlan, C.N.: Application of negative ion MS/MS to the identification of N-glycans released from carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1). J. Mass Spectrom. 44, 50–60 (2009)

    Article  PubMed  CAS  Google Scholar 

  43. Harvey, D.J., Martin, R.L., Jackson, K.A., Sutton, C.W.: Fragmentation of N-linked glycans with a matrix-assisted laser desorption/ionization ion trap time-of-flight mass spectrometer. Rapid Commun. Mass Spectrom. 18, 2997–3007 (2004)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from National natural science fund (31100586, 31010103906, 30930025), National Basic Research Program of China (973 Program) (2012CB8221004, 2011CB910604) and National High-tech R&D Program (863 Program) (2012AA020203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shifang Ren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

(PDF 290 kb)

Supplemental Table 1

(PDF 17 kb)

Supplemental Table 2

(PDF 82 kb)

Supplemental Table 3

(PDF 138 kb)

Supplemental Chart 1

(PDF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, Y., Zhang, X., Zhou, L. et al. Site-specific N-glycosylation identification of recombinant human lectin-like oxidized low density lipoprotein receptor-1 (LOX-1). Glycoconj J 29, 399–409 (2012). https://doi.org/10.1007/s10719-012-9408-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-012-9408-z

Keywords

Navigation