Skip to main content
Log in

The Global Crust and Mantle Gravity Disturbances and Their Implications on Mantle Structure and Dynamics

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The gravity anomalies reflect density perturbations at different depths, which control the physical state and dynamics of the lithosphere and sub-lithospheric mantle. However, the gravity effect of the crust masks the mantle signals. In this study, we develop two frameworks (correction with density contrasts and actual densities) to calculate the gravity anomalies generated by the layered crust. We apply the proposed approaches to evaluate the global mantle gravity disturbances based on the new crustal models. Consistent patterns and an increasing linear trend of the mantle gravity disturbances with lithospheric thickness and Vs velocities at 150 km depth are obtained. Our results indicate denser lithospheric roots in most cratons and lighter materials in the oceanic mantle. Furthermore, our gravity map corresponds well to regional geological features, providing new insights into mantle structure and dynamics. Specifically, (1) reduced anomalies associated with the Superior and Rae cratons indicate more depleted roots compared with other cratons of North America. (2) Negative anomalies along the Cordillera (western North America) suggest mass deficits owing to the buoyant hot mantle. (3) Positive anomalies in the Baltic, East European, and Siberian cratons support thick, dense lithosphere with significant density heterogeneities, which could result from thermo-chemical modifications of the cratonic roots. (4) Pronounced positive anomalies correspond to stable blocks, e.g., Arabian Platform, Indian Craton, and Tarim basin, indicating a thick, dense lithosphere. (5) Low anomalies in the active tectonic units and back-arc basins suggest local mantle upwellings. (6) The cold subducting/detached plates may result in the high anomalies observed in the Zagros and Tibet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data and codes used for this study are available in the Figshare repository (Chen et al. 2022) via https://doi.org/10.6084/m9.figshare.20365548 with the CC BY 4.0 open-source license. The gravity field model EIGEN-6C4 (Ince et al. 2019) can be assessed from the International Centre for Global Earth Models (http://icgem.gfz-potsdam.de/home). The topography/bathymetry model ETOPO1 is available at https://www.ngdc.noaa.gov/mgg/global/global.html. The CRUST1.0 is available at https://igppweb.ucsd.edu/~gabi/crust1.html. The global lithospheric thickness model CAM2016 (Priestley et al. 2019) is available at http://ds.iris.edu/ds/products/emc-cam2016/. The average global seismic models (Hosseini et al. 2018) are available at https://www.earth.ox.ac.uk/~smachine/cgi/. The Moho depth and average crystalline crust P-wave velocity model are available by the reference (Szwillus et al. 2019).

References

  • Agard P, Omrani J, Jolivet L, Whitechurch H, Vrielynck B, Spakman W, Monié P, Meyer B, Wortel R (2011) Zagros orogeny: a subduction-dominated process. Geol Mag 148:692–725

    Google Scholar 

  • Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA

  • An M, Shi Y (2006) Lithospheric thickness of the Chinese continent. Phys Earth Planet 159:257–266

    Google Scholar 

  • Anderson EG (1976) The effect of topography on solutions of Stokes’ problem. School of Surveying, University of New South Wales, Kensington

    Google Scholar 

  • Artemieva IM (2006) Global 1°×1° thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution. Tectonophysics 416:245–277

    Google Scholar 

  • Artemieva IM (2019) Lithosphere structure in Europe from thermal isostasy. Earth Sci Rev 188:454–468

    Google Scholar 

  • Artemieva IM, Mooney WD (2001) Thermal thickness and evolution of Precambrian lithosphere: a global study. J Geophys Res Solid Earth 106:16387–16414

    Google Scholar 

  • Artemieva IM, Thybo H (2013) EUNAseis: a seismic model for Moho and crustal structure in Europe, Greenland, and the North Atlantic region. Tectonophysics 609:97–153

    Google Scholar 

  • Artemieva IM, Thybo H, Cherepanova Y (2019) Isopycnicity of cratonic mantle restricted to kimberlite provinces. Earth Planet Sci Lett 505:13–19

    CAS  Google Scholar 

  • Artemjev ME, Kaban MK, Kucherinenko VA, Demyanov GV, Taranov VA (1994) Subcrustal density inhomogeneities of Northern Eurasia as derived from the gravity data and isostatic models of the lithosphere. Tectonophysics 240:249–280

    Google Scholar 

  • Asgharzadeh MF, von Frese RRB, Kim HR, Leftwich TE, Kim JW (2007) Spherical prism gravity effects by Gauss-Legendre quadrature integration. Geophys J Int 169:1–11

    Google Scholar 

  • Barth MG, Rudnick RL, Horn I, McDonough WF, Spicuzza MJ, Valley JW, Haggerty SE (2002) Geochemistry of xenolithic eclogites from West Africa, part 2: origins of the high MgO eclogites. Geochim Cosmochim Acta 66:4325–4345

    CAS  Google Scholar 

  • Barthelmes F (2013) Definition of functionals of the geopotential and their calculation from spherical harmonic models: theory and formulas used by the calculation service of the International Centre for Global Earth Models (ICGEM). Scientific Technical Report 09/02, revised Edition, http://icgem .gfz-potsd am.de/ICGEM/, Deutsches GeoForschungsZentrum GFZ, Potsdam

  • Becker TW, Faccenna C, Humphreys ED, Lowry AR, Miller MS (2014) Static and dynamic support of western United States topography. Earth Planet Sci Lett 402:234–246

    CAS  Google Scholar 

  • Becker TW, Lowry AR, Faccenna C, Schmandt B, Borsa A, Yu C (2015) Western US intermountain seismicity caused by changes in upper mantle flow. Nature 524:458

    CAS  Google Scholar 

  • Behn MD, Boettcher MS, Hirth G (2007) Thermal structure of oceanic transform faults. Geology 35:307–310

    Google Scholar 

  • Bonatti E (1985) Punctiform initiation of seafloor spreading in the Red Sea during transition from a continental to an oceanic rift. Nature 316:33–37

    Google Scholar 

  • Buehler J, Shearer P (2017) Uppermost mantle seismic velocity structure beneath USArray. J Geophys Res Solid Earth 122:436–448

    Google Scholar 

  • Chang SJ, Merino M, Van der Lee S, Stein S, Stein CA (2011) Mantle flow beneath Arabia offset from the opening Red Sea. Geophys Res Lett 38 L04301

  • Chang SJ, Van Der Lee S, Flanagan MP, Bedle H, Marone F, Matzel EM, Pasyanos ME, Rodgers AJ, Romanowicz B, Schmid C (2010) Joint inversion for three‐dimensional S velocity mantle structure along the Tethyan margin. J Geophys Res Solid Earth 115 B08309

  • Chen B, Zhao G, Kaban MK, Du J, Liu J (2022) Dataset for the crust and mantle gravity disturbances and their implications. figshare. Dataset

  • Chen M, Niu F, Tromp J, Lenardic A, Lee CA, Cao W, Ribeiro J (2017) Lithospheric foundering and underthrusting imaged beneath Tibet. Nat Commun 8:15659

    CAS  Google Scholar 

  • Cherepanova Y, Artemieva I (2015) Density heterogeneity of the cratonic lithosphere: a case study of the Siberian Craton. Gondwana Res 28:1344–1360

    CAS  Google Scholar 

  • Cherepanova Y, Artemieva IM (2013) Subsidence of the West Siberian Basin: geophysical evidence for eclogitization, EGU General Assembly Conference Abstracts, pp EGU2013–7031

  • Cherepanova Y, Artemieva IM, Thybo H, Chemia Z (2013) Crustal structure of the Siberian craton and the West Siberian basin: an appraisal of existing seismic data. Tectonophysics 609:154–183

    Google Scholar 

  • Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res Solid Earth 100:9761–9788

    CAS  Google Scholar 

  • Claessens SJ, Hirt C (2013) Ellipsoidal topographic potential: new solutions for spectral forward gravity modeling of topography with respect to a reference ellipsoid. J Geophys Res Solid Earth 118:5991–6002

    Google Scholar 

  • Clouzet P, Masson Y, Romanowicz B (2018) Box tomography: first application to the imaging of upper-mantle shear velocity and radial anisotropy structure beneath the North American continent. Geophys J Int 213:1849–1875

    CAS  Google Scholar 

  • Davies JH (2013) Global map of solid Earth surface heat flow. Geochem Geophys Geosyst 14:4608–4622

    Google Scholar 

  • Deng Y, Levandowski W, Kusky T (2017) Lithospheric density structure beneath the Tarim basin and surroundings, northwestern China, from the joint inversion of gravity and topography. Earth Planet Sci Lett 460:244–254

    CAS  Google Scholar 

  • Deng Y, Zhang Z, Badal J, Fan W (2014) 3-D density structure under South China constrained by seismic velocity and gravity data. Tectonophysics 627:159–170

    Google Scholar 

  • Eakin CM, Rychert CA, Harmon N (2018) The role of oceanic transform faults in seafloor spreading: a global perspective from seismic anisotropy. J Geophys Res Solid Earth 123:1736–1751

    Google Scholar 

  • El-Sharkawy A, Meier T, Lebedev S, Behrmann JH, Hamada M, Cristiano L, Weidle C, Köhn D (2020) The slab puzzle of the Alpine-Mediterranean region: insights from a new, high-resolution, shear wave velocity model of the upper mantle. Geochem Geophys Geosyst 21:e2020GC008993

    Google Scholar 

  • Faccenna C, Becker TW (2010) Shaping mobile belts by small-scale convection. Nature 465:602–605

    CAS  Google Scholar 

  • Faccenna C, Becker TW (2020) Topographic expressions of mantle dynamics in the Mediterranean. Earth Sci Rev 209:103327

    Google Scholar 

  • Faccenna C, Becker TW, Auer L, Billi A, Boschi L, Brun JP, Capitanio FA, Funiciello F, Horvàth F, Jolivet L (2014) Mantle dynamics in the Mediterranean. Rev Geophys 52:283–332

    Google Scholar 

  • Faccenna C, Becker TW, Jolivet L, Keskin M (2013) Mantle convection in the Middle East: reconciling Afar upwelling, Arabia indentation and Aegean trench rollback. Earth Planet Sci Lett 375:254–269

    CAS  Google Scholar 

  • Faul UH, Jackson I (2005) The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet Sci Lett 234:119–134

    CAS  Google Scholar 

  • Finger NP, Kaban MK, Tesauro M, Haeger C, Mooney WD, Thomas M (2021) A thermo-compositional model of the cratonic lithosphere of South America. Geochem Geophys Geosyst 22:e2020GC009307

    Google Scholar 

  • Finger NP, Kaban MK, Tesauro M, Mooney WD, Thomas M (2022) A thermo-compositional model of the African cratonic lithosphere. Geochem Geophys Geosyst 23:e2021GC010296

    Google Scholar 

  • Furlong KP, Chapman DS (2013) Heat flow, heat generation, and the thermal state of the lithosphere. Annu Rev Earth Planet Sci 41:385–410

    CAS  Google Scholar 

  • Gee DG, Stephenson RA (2006) The European lithosphere: an introduction. In: Gee DG, Stephenson RA (Eds.) European Lithosphere Dynamics. The Geological Society of London, London, pp 1–9

  • Goes S (2002) Thermal structure of the North American uppermost mantle inferred from seismic tomography. J Geophys Res 107:ETG-2

    Google Scholar 

  • Gómez-García ÁM, Meeßen C, Scheck-Wenderoth M, Monsalve G, Bott J, Bernhardt A, Bernal G (2019) 3-D modeling of vertical gravity gradients and the delimitation of tectonic boundaries: the caribbean oceanic domain as a case study. Geochem Geophys Geosyst 20:5371–5393

    Google Scholar 

  • Griffin W, O’Reilly S, Abe N, Aulbach S, Davies R, Pearson N, Doyle B, Kivi K (2003) The origin and evolution of Archean lithospheric mantle. Precambr Res 127:19–41

    CAS  Google Scholar 

  • Grombein T, Seitz K, Heck B (2013) Optimized formulas for the gravitational field of a tesseroid. J Geod 87:645–660

    Google Scholar 

  • Grombein T, Seitz K, Heck B (2014) Topographic–isostatic reduction of GOCE gravity gradients, earth on the edge: science for a sustainable planet. Springer, Berlin, pp 349–356

    Google Scholar 

  • Grombein T, Seitz K, Heck B (2016) The rock–water–ice topographic gravity field model RWI_TOPO_2015 and its comparison to a conventional rock-equivalent version. Surv Geophys 37:937–976

    Google Scholar 

  • Haeger C, Kaban MK, Tesauro M, Petrunin AG, Mooney WD (2019) 3-D density, thermal, and compositional model of the antarctic lithosphere and implications for its evolution. Geochem Geophys Geosyst 20:688–707

    CAS  Google Scholar 

  • Heck B, Seitz K (2007) A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. J Geod 81:121–136

    Google Scholar 

  • Herceg M, Artemieva IM, Thybo H (2016) Sensitivity analysis of crustal correction for calculation of lithospheric mantle density from gravity data. Geophys J Int 204:687–696

    Google Scholar 

  • Hirt C, Yang M, Kuhn M, Bucha B, Kurzmann A, Pail R (2019) SRTM2gravity: an ultrahigh resolution global model of gravimetric terrain corrections. Geophys Res Lett 46:4618–4627

    Google Scholar 

  • Hoernle K, Zhang Y-S, Graham D (1995) Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and central Europe. Nature 374:34–39

    CAS  Google Scholar 

  • Hofmann-Wellenhof B, Moritz H (2006) Physical geodesy. Springer, Berlin

    Google Scholar 

  • Holt PJ, van Hunen J, Allen MB (2012) Subsidence of the West Siberian Basin: effects of a mantle plume impact. Geology 40:703–706

    Google Scholar 

  • Hosseini K, Matthews KJ, Sigloch K, Shephard GE, Domeier M, Tsekhmistrenko M (2018) SubMachine: web-based tools for exploring seismic tomography and other models of earth’s deep interior. Geochem Geophy Geosy 19:1464–1483

    Google Scholar 

  • Huang Z, Zhao D (2022) Seismotectonics of Mongolia and Baikal rift zone controlled by lithospheric structures. Geophys Res Lett 49:e2022GL099525

    Google Scholar 

  • Hyndman R, Currie C (2011) Why is the North America Cordillera high? Hot backarcs, thermal isostasy, and mountain belts. Geology 39:783–786

    Google Scholar 

  • Hyndman R, Lewis T (1999) Geophysical consequences of the Cordillera-Craton thermal transition in southwestern Canada. Tectonophysics 306:397–422

    Google Scholar 

  • Ince ES, Barthelmes F, Reißland S, Elger K, Förste C, Flechtner F, Schuh H (2019) ICGEM—15 years of successful collection and distribution of global gravitational models, associated services, and future plans. Earth Syst Sci Data 11:647–674

    Google Scholar 

  • Jolivet L, Faccenna C (2000) Mediterranean extension and the Africa-Eurasia collision. Tectonics 19:1095–1106

    Google Scholar 

  • Jordan TH (1978) Composition and development of the continental tectosphere. Nature 274:544–548

    CAS  Google Scholar 

  • Kaban MK, El Khrepy S, Al-Arifi N, Tesauro M, Stolk W (2016a) Three-dimensional density model of the upper mantle in the Middle East: interaction of diverse tectonic processes. J Geophys Res Solid Earth 121:5349–5364

    Google Scholar 

  • Kaban MK, Mooney WD, Petrunin AG (2015) Cratonic root beneath North America shifted by basal drag from the convecting mantle. Nat Geosci 8:797–800

    CAS  Google Scholar 

  • Kaban MK, Schwintzer P, Artemieva IM, Mooney WD (2003) Density of the continental roots: compositional and thermal contributions. Earth Planet Sci Lett 209:53–69

    CAS  Google Scholar 

  • Kaban MK, Schwintzer P, Tikhotsky SA (1999) A global isostatic gravity model of the Earth. Geophys J Int 136:519–536

    Google Scholar 

  • Kaban MK, Sidorov RV, Soloviev AA, Gvishiani AD, Petrunin AG, Petrov OV, Kashubin SN, Androsov EA, Milshtein ED (2022) A new Moho map for North-Eastern Eurasia based on the analysis of various geophysical data. Pure Appl Geophys 179:3903–3916c

    Google Scholar 

  • Kaban MK, Stolk W, Tesauro M, El Khrepy S, Al-Arifi N, Beekman F, Cloetingh SAPL (2016b) 3D density model of the upper mantle of Asia based on inversion of gravity and seismic tomography data. Geochem Geophys Geosyst 17:4457–4477

    Google Scholar 

  • Kaban MK, Tesauro M, Cloetingh S (2010) An integrated gravity model for Europe’s crust and upper mantle. Earth Planet Sci Lett 296:195–209

    CAS  Google Scholar 

  • Kaban MK, Tesauro M, Mooney WD, Cloetingh SA (2014) Density, temperature, and composition of the North American lithosphere—New insights from a joint analysis of seismic, gravity, and mineral physics data: 1. Density structure of the crust and upper mantle. Geochem Geophys Geosyst 15:4781–4807

    Google Scholar 

  • Ke X, Tian M, Guan D, Wang Y, Shi H (2019) Gravitational gradients derived from GOCE and density structures beneath the North China Craton. J Asian Earth Sci 174:152–166

    Google Scholar 

  • Kind R, Yuan X (2010) Geophysics. Seismic images of the biggest crash on Earth. Science 329:1479–1480

    CAS  Google Scholar 

  • Koulakov I, Bushenkova N (2010) Upper mantle structure beneath the Siberian craton and surrounding areas based on regional tomographic inversion of P and PP travel times. Tectonophysics 486:81–100

    Google Scholar 

  • Laske G, Masters G, Ma Z, Pasyanos M (2013) Update on CRUST1. 0-A 1‐degree global model of Earth’s crust. Geophys Res Abstr 15 abstrEGU2013-2658

  • Lebedev S, Meier T, van der Hilst RD (2006) Asthenospheric flow and origin of volcanism in the Baikal Rift area. Earth Planet Sci Lett 249:415–424

    CAS  Google Scholar 

  • Lee C-TA, Luffi P, Chin EJ (2011) Building and destroying continental mantle. Annu Rev Earth Planet Sci 39:59–90

    CAS  Google Scholar 

  • Lei J (2011) Seismic tomographic imaging of the crust and upper mantle under the central and western Tien Shan orogenic belt. J Geophys Res 116 B09305

  • Lei J, Zhao D (2007) Teleseismic P-wave tomography and the upper mantle structure of the central Tien Shan orogenic belt. Phys Earth Planet 162:165–185

    Google Scholar 

  • Li C, van der Hilst RD, Meltzer AS, Engdahl ER (2008) Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet Sci Lett 274:157–168

    CAS  Google Scholar 

  • Li J, Ding W, Lin J, Xu Y, Kong F, Li S, Huang X, Zhou Z (2021) Dynamic processes of the curved subduction system in Southeast Asia: a review and future perspective. Earth Sci Rev 217:103647

    CAS  Google Scholar 

  • Liang Q, Chen C, Kaban MK, Thomas M (2019) Upper-mantle density structure in the Philippine Sea and adjacent region and its relation to tectonics. Geophys J Int 219:945–957

    Google Scholar 

  • Liang Q, Chen C, Li Y (2014) 3-D inversion of gravity data in spherical coordinates with application to the GRAIL data. J Geophys Res Planets 119:1359–1373

    Google Scholar 

  • Matthews KJ, Maloney KT, Zahirovic S, Williams SE, Seton M, Mueller RD (2016) Global plate boundary evolution and kinematics since the late Paleozoic. Global Planet Change 146:226–250

    Google Scholar 

  • Mooney WD (2015) Crust and lithospheric structure–global crustal structure. In: Schubert G (ed) Treatise on geophysics, 2nd edn. Elsevier, Amsterdam, pp 361–417

    Google Scholar 

  • Mooney WD, Kaban MK (2010) The North American upper mantle: density, composition, and evolution. J Geophys Res Solid Earth 115 B12424

  • Mooney WD, Laske G, Masters TG (1998) CRUST 5.1: a global crustal model at 5×5. J Geophys Res Solid Earth 103:727–747

    CAS  Google Scholar 

  • Mooney WD, Vidale JE (2003) Thermal and chemical variations in subcrustal cratonic lithosphere: evidence from crustal isostasy. Lithos 71:185–193

    CAS  Google Scholar 

  • Morgan JP, Forsyth DW (1988) Three-dimensional flow and temperature perturbations due to a transform offset: effects on oceanic crustal and upper mantle structure. J Geophys Res Solid Earth 93:2955–2966

    Google Scholar 

  • Panet I, Pajot-Métivier G, Greff-Lefftz M, Métivier L, Diament M, Mandea M (2014) Mapping the mass distribution of Earth’s mantle using satellite-derived gravity gradients. Nat Geosci 7:131–135

    CAS  Google Scholar 

  • Parsons T, Thompson GA, Sleep NH (1994) Mantle plume influence on the Neogene uplift and extension of the US western Cordillera? Geology 22:83–86

    Google Scholar 

  • Pasyanos ME, Masters TG, Laske G, Ma Z (2014) LITHO1.0: an updated crust and lithospheric model of the Earth. J Geophys Res Solid Earth 119:2153–2173

    Google Scholar 

  • Pearson D, Wittig N (2014) The formation and evolution of cratonic mantle lithosphere–evidence from mantle xenoliths. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Amsterdam, pp 255–292

    Google Scholar 

  • Pearson DG, Scott JM, Liu J, Schaeffer A, Wang LH, van Hunen J, Szilas K, Chacko T, Kelemen PB (2021) Deep continental roots and cratons. Nature 596:199–210

    CAS  Google Scholar 

  • Petrov O, Morozov A, Shokalsky S, Kashubin S, Artemieva IM, Sobolev N, Petrov E, Ernst RE, Sergeev S, Smelror M (2016) Crustal structure and tectonic model of the Arctic region. Earth Sci Rev 154:29–71

    Google Scholar 

  • Pollack HN, Hurter SJ, Johnson JR (1993) Heat flow from the Earth’s interior: analysis of the global data set. Rev Geophys 31:267–280

    Google Scholar 

  • Priestley K, McKenzie D (2006) The thermal structure of the lithosphere from shear wave velocities. Earth Planet Sci Lett 244:285–301

    CAS  Google Scholar 

  • Priestley K, McKenzie D, Ho T (2019) A lithosphere–asthenosphere boundary—a global model derived from multimode surface‐wave tomography and petrology. In: Yuan H, Romanowicz B (eds) Lithospheric discontinuities, AGU Geophysical Monograph 239, pp 111–123

  • Rexer M, Hirt C, Claessens S, Tenzer R (2016) Layer-based modelling of the earth’s gravitational potential up to 10-km scale in spherical harmonics in spherical and ellipsoidal approximation. Surv Geophys 37:1035–1074

    Google Scholar 

  • Roecker S, Sabitova T, Vinnik L, Burmakov YA, Golvanov M, Mamatkanova R, Munirova L (1993) Three-dimensional elastic wave velocity structure of the western and central Tien Shan. J Geophys Res Solid Earth 98:15779–15795

    Google Scholar 

  • Root B, Novák P, Dirkx D, Kaban M, van der Wal W, Vermeersen L (2016) On a spectral method for forward gravity field modelling. J Geodyn 97:22–30

    Google Scholar 

  • Root BC, Ebbing J, van der Wal W, England RW, Vermeersen LLA (2017) Comparing gravity-based to seismic-derived lithosphere densities: a case study of the British Isles and surrounding areas. Geophys J Int 208:1796–1810

    CAS  Google Scholar 

  • Saunders AD, England RW, Reichow MK, White RV (2005) A mantle plume origin for the Siberian traps: uplift and extension in the West Siberian Basin, Russia. Lithos 79:407–424

    CAS  Google Scholar 

  • Schaeffer A, Lebedev S (2014) Imaging the North American continent using waveform inversion of global and USArray data. Earth Planet Sci Lett 402:26–41

    CAS  Google Scholar 

  • Schaeffer AJ, Lebedev S (2013) Global shear speed structure of the upper mantle and transition zone. Geophys J Int 194:417–449

    Google Scholar 

  • Schivardi R, Morelli A (2011) EPmantle: a 3-D transversely isotropic model of the upper mantle under the European Plate. Geophys J Int 185:469–484

    Google Scholar 

  • Schutt D, Lesher C (2006) Effects of melt depletion on the density and seismic velocity of garnet and spinel lherzolite. J Geophys Res Solid Earth 111 B05401

  • Shirey SB, Carlson RW, Richardson SH, Menzies A, Gurney JJ, Pearson DG, Harris JW, Wiechert U (2001) Archean emplacement of eclogitic components into the lithospheric mantle during formation of the Kaapvaal Craton. Geophys Res Lett 28:2509–2512

    CAS  Google Scholar 

  • Shulgin A, Artemieva IM (2019) Thermochemical heterogeneity and density of continental and oceanic upper mantle in the European-North atlantic region. J Geophys Res Solid Earth 124:9280–9312

    Google Scholar 

  • Steinberger B, Becker TW (2018) A comparison of lithospheric thickness models. Tectonophysics 746:325–338

    Google Scholar 

  • Stolk W, Kaban M, Beekman F, Tesauro M, Mooney WD, Cloetingh S (2013) High resolution regional crustal models from irregularly distributed data: application to Asia and adjacent areas. Tectonophysics 602:55–68

    Google Scholar 

  • Straume EO, Gaina C, Medvedev S, Hochmuth K, Gohl K, Whittaker JM, Fattah RA, Doornenbal JC, Hopper JR (2019) GlobSed: updated total sediment thickness in the world’s oceans. Geochem Geophys Geosyst 20:1756–1772

    Google Scholar 

  • Sun Y, Dong S, Zhang H, Li H, Shi Y (2013) 3D thermal structure of the continental lithosphere beneath China and adjacent regions. J Asian Earth Sci 62:697–704

    Google Scholar 

  • Szwillus W, Afonso JC, Ebbing J, Mooney WD (2019) Global crustal thickness and velocity structure from geostatistical analysis of seismic data. J Geophys Res Solid Earth 124:1626–1652

    Google Scholar 

  • Tao K, Grand SP, Niu FL (2018) Seismic structure of the upper mantle beneath Eastern Asia from full waveform seismic tomography. Geochem Geophys Geosyst 19:2732–2763

    CAS  Google Scholar 

  • Tenzer R, Chen W (2019) Mantle and sub-lithosphere mantle gravity maps from the LITHO1.0 global lithospheric model. Earth Sci Rev 194:38–56

    Google Scholar 

  • Tenzer R, Chen W, Tsoulis D, Bagherbandi M, Sjöberg LE, Novák P, Jin S (2015) Analysis of the refined CRUST1.0 crustal model and its gravity field. Surv Geophys 36:139–165

    Google Scholar 

  • Tenzer R, Hamayun K, Vajda P (2009) Global maps of the CRUST 2.0 crustal components stripped gravity disturbances. J Geophys Res Solid Earth 114 B05408

  • Tesauro M, Kaban MK, Aitken ARA (2020) Thermal and compositional anomalies of the Australian upper mantle from seismic and gravity data. Geochem Geophys Geosyst 21:e2020GC009305

    Google Scholar 

  • Tesauro M, Kaban MK, Mooney WD, Cloetingh S (2014a) NACr14: a 3D model for the crustal structure of the North American Continent. Tectonophysics 631:65–86

    Google Scholar 

  • Tesauro M, Kaban MK, Mooney WD, Cloetingh SA (2014b) Density, temperature, and composition of the North American lithosphere—New insights from a joint analysis of seismic, gravity, and mineral physics data: 2. Thermal and compositional model of the upper mantle. Geochem Geophys Geosyst 15:4808–4830

    Google Scholar 

  • Turcotte D, Schubert G (2014) Geodynamics, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Uieda L, Barbosa VCF, Braitenberg C (2016) Tesseroids: forward-modeling gravitational fields in spherical coordinates. Geophysics 81:F41–F48

    Google Scholar 

  • Vajda P, Ellmann A, Meurers B, Vanicek P, Novak P, Tenzer R (2008) Global ellipsoid-referenced topographic, bathymetric and stripping corrections to gravity disturbance. Stud Geophys Geod 52:19–34

    Google Scholar 

  • Van der Meer DG, Van Hinsbergen DJ, Spakman W (2018) Atlas of the underworld: slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics 723:309–448

    Google Scholar 

  • Wang Y (2001) Heat flow pattern and lateral variations of lithosphere strength in China mainland: constraints on active deformation. Phys Earth Planet 126:121–146

    Google Scholar 

  • Wang Y, Cao Z, Peng L, Liu L, Chen L, Lundstrom C, Peng D, Yang X (2023) Secular craton evolution due to cyclic deformation of underlying dense mantle lithosphere. Nat Geosci 16: 637–645

  • Wang YY, Liu LJ, Zhou Q (2022a) Geoid reveals the density structure of cratonic lithosphere. J Geophys Res-Sol Ea 127:e2022JB024270

    Google Scholar 

  • Wang YY, Liu LJ, Zhou Q (2022b) Topography and gravity reveal denser cratonic lithospheric mantle than previously thought. Geophys Res Lett 49:e2021GL096844

    Google Scholar 

  • Wild-Pfeiffer F (2008) A comparison of different mass elements for use in gravity gradiometry. J Geod 82:637–653

    Google Scholar 

  • Xia B, Artemieva IM, Thybo H, Klemperer SL (2023) Strong Variability in the Thermal Structure of Tibetan Lithosphere Abstract Plain Language Summary Key Points. J Geophys Res-Sol Ea 128 e2022JB026213

  • Zhao G, Chen B, Uieda L, Liu J, Kaban MK, Chen L, Guo R (2019) Efficient 3-D large-scale forward modeling and inversion of gravitational fields in spherical coordinates with application to lunar mascons. J Geophys Res Solid Earth 124:4157–4173

    Google Scholar 

  • Zhao GD, Liu JX, Chen B, Kaban MK, Du JS (2021) 3-D density structure of the lunar mascon basins revealed by a high-efficient gravity inversion of the GRAIL data. J Geophys Res-Planet 126:e2021JE006841

    Google Scholar 

  • Zhao W, Kumar P, Mechie J, Kind R, Meissner R, Wu Z, Shi D, Su H, Xue G, Karplus M, Tilmann F (2011) Tibetan plate overriding the Asian plate in central and northern Tibet. Nat Geosci 4:870–873

    CAS  Google Scholar 

  • Zhong YY, Ren ZY, Tang JT, Lin YF, Chen B, Deng YF, Jiang YD (2022) Constrained gravity inversion with adaptive inversion grid refinement in spherical coordinates and its application to mantle structure Beneath Tibetan Plateau. J Geophys Res-Sol Ea 127:e2021JB022916

    Google Scholar 

  • Zhu H, Bozdağ E, Tromp J (2015) Seismic structure of the European upper mantle based on adjoint tomography. Geophys J Int 201:18–52

    Google Scholar 

  • Zielhuis A, Nolet G (1994) Deep seismic expression of an ancient plate boundary in Europe. Science 265:79–81

    CAS  Google Scholar 

Download references

Acknowledgements

We thank three anonymous reviewers for their constructive comments. This research is supported by the National Natural Science Foundation of China (Grant Nos. 42074109, 42204067). The authors thank the High Performance Computing Center of Central South University for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Gao.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare relevant to this article's content. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 5042 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Kaban, M.K., Zhao, G. et al. The Global Crust and Mantle Gravity Disturbances and Their Implications on Mantle Structure and Dynamics. Surv Geophys 45, 349–382 (2024). https://doi.org/10.1007/s10712-023-09810-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-023-09810-y

Keywords

Navigation