Skip to main content

Advertisement

Log in

Simulating land use and land cover change in a semi-arid region from 1989 to 2039: the case of Hafir-Zariffet forest, Tlemcen, Algeria

  • Published:
GeoJournal Aims and scope Submit manuscript

Abstract

The pace and magnitude of land use and land cover (LULC) change are of global concern due to its role in pressing issues such as climate change, food security, soil degradation and biodiversity loss. The present study analyzed the spatiotemporal changes in LULC in the Hafir-Zariffet forest of Tlemcen, Northwest Algeria. We also simulated possible future LULC scenarios for the area. LULC maps of 1989, 1999, 2009 and 2019 were classified using the Random Forest Algorithm in R software and change assessed via intensity analysis. The results revealed that the first decade (1989–1999) showed a faster intensity of change compared to the second (1999–2009) and the third decades (2009–2019). Sparse wooded maquis experienced a major decline (1989–2019) of 15.19% whereas open matorral (+ 14.30), forest (+ 0.15%), and agriculture (+ 1.33%) increased. The simulation at a skill measure of > 0.50 showed that the open matorral could witness the highest loss of 29.13% while forest cover, sparse wooded maquis, settlement and barelands, and agriculture could increase by 9.51%, 13.26%, 0.56% and 5.79%, respectively between 2019 and 2039 based on the change pattern between 2009 and 2019 in the study area. The substantial decline of open matorral and the expansion of agriculture, settlement and barelands could pose a threat to the ecology of the environment as the changes will impact the ecosystem functions of the landscape. The findings of this study provide useful information on understanding spatiotemporal LULC change in the semi-arid Mediterranean region and can assist sustainable land development policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  • Aldwaik, S. Z., & Pontius, R. G., Jr. (2012). Intensity analysis to unify measurements of size and stationarity of land changes by interval, category, and transition. Landscape and Urban Planning, 106 (1),103–114.

    Article  Google Scholar 

  • Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., & Hogg, E. T. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259 (4), 660–684.

    Article  Google Scholar 

  • Arsanjani, J. J., Helbich, M., Kainz, W., & Boloorani, A. D. (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21, 265–275.

    Article  Google Scholar 

  • Atkinson, P. M., & Tatnall, A. (1997). Introduction neural networks in remote sensing. International Journal of Remote Sensing, 18(4), 699–709.

    Article  Google Scholar 

  • Babali, B., Hasnaoui, A., Medjati, N., & Bouazza, M. (2013). Note on the vegetation of the mounts of tlemcen (Western Algeria): Floristic and phytoecological aspects. Open Journal of Ecology, 3(5), 370-381.

    Article  Google Scholar 

  • Bardadi, A., Souidi, Z., Cohen, M., & Amara, M. (2021). Land use/land cover changes in the Tlemcen Region (Algeria) and classification of fragile areas. Sustainability, 13(14), 7761.

    Article  Google Scholar 

  • Bencherif, K., & Bellifa, M. (2017). The expected impact of climate change on forest species composition in the national park of Tlemcen-Algeria. Agriculture and Forestry Journal, 1(2), 79–88.

    Google Scholar 

  • Benmostefa, O. (2004). Assessment of the forest resources of the Zariffet Forest and proposal of a key for determining stand types. University of Tlemcen.

    Google Scholar 

  • Biru, M. K., Minale, A. S., & Debay, A. B. (2015). Multitemporal land use land cover change and dynamics of Blue Nile Basin by using GIS and remote sensing techniques, northwestern Ethiopia. International Journal of Environmental Sciences, 4(2), 81–88.

    Google Scholar 

  • Bouhraoua, R. T. (2003). Health situation of some cork oak forests in western Algeria: a special study of the problems posed by insects (pp. 290). Ph. D, thesis, Algeria: Tlemcen University.

  • Bouhraoua, R. T., Hessnaoui, H., Derague, Z., Guentari, H. & Saïmi, F. (2008). Overview of animal biodiversity of Tlemcen National Park (north-west of Algeria). Les Annales de l'INRGREF, 1 (12), 231–253.

  • Braimoh, A. K., & Vlek, P. L. (2005). Land-cover change trajectories in Northern Ghana. Journal of Environmental Management, 36(3), 356–373.

    Google Scholar 

  • Clarke, K. C., Hoppen, S., & Gaydos, L. (1997). A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning b: Planning and Design, 24(2), 247–261.

    Article  Google Scholar 

  • Crooks, A. T., & Heppenstall, A. J. (2012). Introduction to agent-based modelling. In: Heppenstall, A., Crooks, A., See, L., Batty, M. (eds) Agent-Based Models of Geographical Systems. Springer, Dordrecht. Pp 85-105.

    Book  Google Scholar 

  • Dehane, B. (2012). Incidence of the health status of cork oak trees on annual increments and cork quality in two Oranian cork plantations: M'sila (w. Oran) and zarieffet (w. Tlemcen). University of Tlemcen. (In French).

  • Derbal, S. (2006). Typologies and management elements of a deciduous stand (Cork oak) in Hafir (Wilaya of Tlemcen). University of Tlemcen.

    Google Scholar 

  • Du, X., Jin, X., Yang, X., Yang, X., & Zhou, Y. (2014). Spatial pattern of land use change and its driving force in Jiangsu province. International Journal of Environmental Research and Public Health, 11(3), 3215–3232.

    Article  Google Scholar 

  • El-Beltagy, A., & Madkour, M. (2012). Impact of climate change on arid lands agriculture. Agriculture & Food Security, 1, 3. doi:10.1186/ 2048-7010-1-3.

    Article  Google Scholar 

  • Forkuo, E. K., & Frimpong, A. (2012). Analysis of forest cover change detection. International Journal of Remote Sensing, 2(4), 82–92.

    Google Scholar 

  • Fu, X., Wang, X., & Yang, Y. J. (2018). Deriving suitability factors for CA-Markov land use simulation model based on local historical data. Journal of Environmental Management, 206, 10–19. https://doi.org/10.1016/j.jenvman.2017.10.012.

    Article  Google Scholar 

  • Gaouar, A. (1980). Hypotheses and reflections on the degradation of forest ecosystems in the Tlemcen region (Algeria). Mediterranean Forest, (2): 131-146.

  • Gaur, S., Mittal, A., Bandyopadhyay, A., Holman, I., & Singh, R. (2020). Spatio-temporal analysis of land use and land cover change: a systematic model inter-comparison driven by integrated modelling techniques. International Journal of Remote Sensing, 41(23), 9229–9255.

    Article  Google Scholar 

  • Gaur, S., & Singh, R. (2023). A comprehensive review on land use/land cover (LULC) change modeling for urban development: current status and future prospects. Sustainability, 15(2), 903. https://doi.org/10.3390/su15020903

    Article  Google Scholar 

  • Ghalem, A. (2006). Typological study, rehabilitation study and reation of the environment after fire: case of the Tlemcen suberaies. University of Tlemcen.

    Google Scholar 

  • Ghalem, A., Barbosa, I. S., Bouhraoua, R. T., Costa, A., & Dello Ioio, R. (2016). Comparing cork quality from Hafir-Zarieffet mountain forest (Tlemcen, Algeria) vs. Tagus basin Montado (Benavente, Portugal). Cogent Biology, 2:1. https://doi.org/10.1080/23312025.2016.1236431

    Article  Google Scholar 

  • Ghenim, A. N., & Megnounif, A. (2013). Extent of drought in the Meffrouche dam catchment area (North-West Algeria). Physio-Geo Physical Geography and Environment, 7, 35–49.

    Google Scholar 

  • Gilbert, N. (2019). Agent-based models. Sage Publications.

    Google Scholar 

  • Hadi, S. J., Shafri, H. Z. & Mahir, M. D. (2014). Modelling LULC for the period 2010–2030 using GIS and Remote sensing: a case study of Tikrit, Iraq. In IOP Conference Series: Earth and Environmental Science (pp. 012053). IOP Publishing.

  • Hailu, A., Mammo, S., & Kidane, M. (2020). Dynamics of land use, land cover change trend and its drivers in Jimma Geneti District. Western Ethiopia. Land Use Policy, 99, 105011. https://doi.org/10.1016/j.landusepol.2020.105011

    Article  Google Scholar 

  • Han, J., Hayashi, Y., Cao, X., & Imura, H. (2009). Application of an integrated system dynamics and cellular automata model for urban growth assessment: A case study of Shanghai. China. Landscape and Urban Planning, 91(3), 133–141.

    Article  Google Scholar 

  • Henaoui, S.E.-A., & Bouazza, M. (2012). The current state of the plant diversity in the Tlemcen region (Northwest Algeria). Open Journal of Ecology, 2(4), 244–255.

    Article  Google Scholar 

  • Huang, J., Wu, Y., Gao, T., Zhan, Y., & Cui, W. (2015). An integrated approach based on Markov Chain and cellular automata to simulation of urban land use changes. Applied Mathematics & Information Sciences, 9(2), 769.

    Google Scholar 

  • IPCC. (2001). Climate Change 2001: Impacts, Adaptation, and Vulnerability. Cambridge University Press.

    Google Scholar 

  • IPCC. (2007). Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC. Cambridge University Press.

    Google Scholar 

  • Islam, K., Jashimuddin, M., Nath, B., & Nath, T. K. (2018). Land use classification and change detection by using multi-temporal remotely sensed imagery: The case of Chunati wildlife sanctuary, Bangladesh. The Egyptian Journal of Remote Sensing and Space Science, 21(1), 37–47.

    Article  Google Scholar 

  • Jun, C., Ban, Y., & Li, S. (2014). Open access to Earth land-cover map. Nature, 514, 434–434.

    Article  Google Scholar 

  • Kamga, M. A., Fils, S. C. N., Ayodele, M. O., Olatubara, C. O., Nzali, S., Adenikinju, A., & Khalifa, M. (2019). Evaluation of land use/land cover changes due to gold mining activities from 1987 to 2017 using landsat imagery, East Cameroon. GeoJournal, 85, 1097–1114. https://doi.org/10.1007/s10708-019-10002-8

    Google Scholar 

  • Koomen, E., & Borsboom-van Beurden, J. (2011). Land-use modelling in planning practice. Springer Nature. Dordrecht, 2011, pp 214.

    Book  Google Scholar 

  • Kumar, S., Ghosh, S., Hooda, R. S., & Singh, S. (2019). Monitoring and prediction of land use land cover changes and its impact on land surface temperature in the central part of Hisar District, Haryana Under Semi-Arid Zone of India. Journal of Landscape Ecology, 12(3), 117–140.

    Article  Google Scholar 

  • Labs, C. (2015). TerrSet Tutorial. Clark University.

    Google Scholar 

  • Letreuch-Belarouci, A. (2009). Structural characteristics of the suberaies of the Tlemcen National Park, natural regeneration and sustainable development. University of Tlemcen.

    Google Scholar 

  • Letreuch-Belarouci, A., Boumediene, M., Letreuch-Belarouci, N. & Aumasson, P. (2010). Strategy for the development and conservation of the Tlemcen Mountains suberaies (Algeria). French Forestry Review, 62(1), 25-42.

  • Lin, A., Sun, X., Wu, H., Luo, W., Wang, D., Zhong, D., Wang, Z., Zhao, L., & Zhu, J. (2021). Identifying urban building function by integrating remote sensing imagery and POI data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 8864–8875.

    Article  Google Scholar 

  • Mas, J. F., Kolb, M., Paegelow, M., Camacho Olmedo, M. T., & Houet, T. (2014). Inductive pattern-based land use/cover change models: A comparison of four software packages. Environmental Modelling & Software, 2014(51), 94–111.

    Article  Google Scholar 

  • Meiyappan, P., Dalton, M., O’Neill, B. C., & Jain, A. K. (2014). Spatial modeling of agricultural land use change at global scale. Ecological Modelling, 291, 152–174.

    Article  Google Scholar 

  • Mesli, K., Bouazza, M., Godron, M., & Vela, E. (2009). Ecological diagnostic of some reforestations in the Tlemcen National Park. Acta Botanica Gallica, 156(2), 283–294.

    Article  Google Scholar 

  • Mishra, V. N., Rai, P. K., & Mohan, K. (2014). Prediction of land use changes based on land change modeler (LCM) using remote sensing: A case study of Muzaffarpur (Bihar) India. Journal of the Geographical Institute “jovan Cvijic” SASA, 64(1), 111–127.

    Article  Google Scholar 

  • Nath, B., Wang, Z., Ge, Y., Islam, K., Singh, P., & Niu, Z. (2020). Land use and land cover change modeling and future potential landscape risk assessment using Markov-CA model and analytical hierarchy process. ISPRS International Journal of Geo-Information, 9(2), 134.

    Article  Google Scholar 

  • O’sullivan, D., Millington, J., Perry, G., & Wainwright, J. (2012). Agent-based models–because they’re worth it? Agent-based models of geographical systems (pp. 109–123). Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8927-4_6

    Book  Google Scholar 

  • Olofsson, P., Foody, G. M., Stehman, S. V., & Woodcock, C. E. (2013). Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sensing of Environment, 129, 122–131.

    Article  Google Scholar 

  • Ololade, O. O. (2012). Evaluation of the Sustainability and Environmental impacts of Mining in the Rustenburg region. Dissertation. University of Johannesburg.

  • P.N.T. (2009). Plan de gestion (2006–2010) rapport de ministère de l’agriculture et du développement rural (M.A.D.R.).

  • Peckarsky, M. G. (2013). Civil war in Algeria and its aftermath: Analyzing the emergence and evolution of non-state armed groups. Tufts University.

    Google Scholar 

  • Pontius, R. G., & Schneider, L. C. (2001). Land-cover change model validation by an ROC method for the Ipswich Watershed, Massachusetts, USA. Agriculture, Ecosystems and Environment, 85(1-3), 239–248.

    Article  Google Scholar 

  • Ratiba, A., Valentina, B., Abedelkader, B., Ayyoub, B., Wiam, B. B., Omar, B., Mohamed, Z. C. S., Nardjes, G., Michele, S., & Wahid, T. (2018). Downscaling and climate modelling with an application to forest management in Algeria; ClimaSouth—technical paper 4. National Projet: Algiers, Algeria, 2018, 57.

    Google Scholar 

  • Razavi, B. S. (2014). Predicting the trend of land use changes using artificial neural network and markov chain model (case study: Kermanshah City). Research Journal of Environmental and Earth Sciences, 6(4), 215–226.

    Article  Google Scholar 

  • Ronneberger, K., Tol, R. S. & Schneider, U. A. (2005). KLUM: A simple model of global agricultural land use as a coupling tool of economy and vegetation. Working paper, FNU-65.

  • Rounsevell, M., Annetts, J., Audsley, E., Mayr, T., & Reginster, I. (2003). Modelling the spatial distribution of agricultural land use at the regional scale. Agriculture, Ecosystems & Environment, 95(2-3), 465–479.

    Article  Google Scholar 

  • Schelhaas, M.-J., Eggers, J., Lindner, M., Nabuurs, G.-J., Pussinen, A., Paivinen, R., Schuck, A., Verkerk, P., Van der Werf, D. & Zudin, S. (2007). Model documentation for the European forest information scenario model (EFISCEN 3.1. 3). Alterra.

  • Schulhofer-Wohl, J. (2007). Civil war in Algeria, 1992–Present. In K. DeRouen and U. Heo, (Eds). Civil Wars of the World: Major Conflicts Since World War II, (pp. 103–124). ABC-CLIO, Santa Barbara, CA.

  • Schulz, J. J., Cayuela, L., Echeverria, C., Salas, J., & Rey Benayas, J. M. (2010). Monitoring land cover change of the dryland forest landscape of Central Chile (1975–2008). Applied Geography, 30(3), 436–447.

    Article  Google Scholar 

  • Seguí P. Q., Martin, E., Sanchez, E., Zribi, M., Vennetier, M., Vicente-Serrano, S. & Vidal, J.-P. (2016). Drought: Observed trends, future projections. In: Moatti J.P., Thiébault S. (eds) The Mediterranean region under climate change. IRD Éditions, Marseille, pp 123–131

  • Serra, P., Pons, X., & Saurí, D. (2008). Land-cover and land-use change in a Mediterranean landscape: a spatial analysis of driving forces integrating biophysical and human factors. Applied Geography, 28(3), 189–209.

    Article  Google Scholar 

  • Siraj, M., Zhang, K., & Moges, K. (2018). Retrospective analysis of land use land cover dynamics using gis and remote sensing in central highlands of Ethiopia. Journal Landscape Ecology, 11(2), 31–52.

    Article  Google Scholar 

  • Stephenne, N., & Lambin, E. (2001). A dynamic simulation model of land-use changes in Sudano-sahelian countries of Africa (SALU). Agriculture, Ecosystems & Environment, 85, 145–161.

    Article  Google Scholar 

  • Stephenne, N., & Lambin, E. (2004). Scenarios of land-use change in Sudano-sahelian countries of Africa to better understand driving forces. GeoJournal, 61(4), 365–379.

    Article  Google Scholar 

  • Subedi, P., Subedi, K., & Thapa, B. (2013). Application of a hybrid cellular automaton–Markov (CA-Markov) model in land-use change prediction: a case study of Saddle Creek Drainage Basin, Florida. Applied Ecology and Environmental Sciences, 1(6), 126–132.

    Article  Google Scholar 

  • Tomaselli, R. (1977). The degradation of the Mediterranean maquis. Ambio, 6(6), 356–362. https://www.jstor.org/stable/4312322

  • Uddin, K., Chaudhary, S., Chettri, N., Kotru, R., Murthy, M., Chaudhary, P. R., Ning, W., Shrestha, M. S., & Gautam, K. S. (2015). The changing land cover and fragmenting forest on the roof of the world: A case study in Nepal’s Kailash Sacred Landscape. Landscape and Urban Planning, 141, 1–10.

    Article  Google Scholar 

  • Van Delden, H., Luja, P., & Engelen, G. (2007). Integration of multi-scale dynamic spatial models of socio-economic and physical processes for river basin management. Environmental Modelling & Software, 22(2), 223–238.

    Article  Google Scholar 

  • Veldkamp, A., & Fresco, L. (1996). CLUE-CR: an integrated multi-scale model to simulate land use change scenarios in Costa Rica. Ecological Modelling, 91(1-3), 231–248.

    Article  Google Scholar 

  • Verburg, P. H., Kok, K., Pontius, R. G., & Veldkamp, A. (2006). Modeling land-use and land-cover change. Land-use and land-cover change (pp. 117–135). Springer.

    Book  Google Scholar 

  • Verburg, P. H., & Overmars, K. P. (2009). Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landscape Ecology, 24(9), 1167–1181.

    Article  Google Scholar 

  • Wang, J., Bretz, M., Dewan, M. A. A. & Delavar, M. A. (2022). Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects. Science of the Total Environment, 822(20), 153559.

  • Watson, R. T., Zinyowera, M. C., & Moss, R. H. (1997). The regional impacts of climate change: an assessment of vulnerability. Intergovernmental Panel on Climate Change.

    Google Scholar 

  • Wright, I., Smeets, P., Elbersen, B., Roos Klein-Lankhorst, J., Pflimlin, A., Louloudis, L., Vlahos, G., Crabtree, J., Williams, S. & Hinrichs, P. (1999). A protocol for building the ELPEN livestock policy decision support system (pp. 37). Aberdeen, UK: MLURI.

  • Zamyatin, A. & Markov, N. (2005). Approach to land cover change modelling using cellular automata. In Proceedings of 8th Conference on Geographic Information Science, Estoril, Portugal, AGILE (pp. 587–592). Citeseer.

  • Zhao, J., Yang, Y., Zhao, Q., & Zhao, Z. (2017). Effects of ecological restoration projects on changes in land cover: A case study on the Loess Plateau in China. Scientific Reports, 7, 44496.

    Article  Google Scholar 

  • Zhou, D., Zhao, S., & Zhu, C. (2012). The grain for green project induced land cover change in the Loess Plateau: A case study with Ansai County, Shanxi Province, China. Ecological Indicators, 23, 88–94. https://doi.org/10.1016/j.ecolind.2012.03.021

    Article  Google Scholar 

Download references

Acknowledgements

We wish to express our special appreciation to the Intra-Africa Mobility program for funding this study. We are also grateful to the technicians of the research laboratory of soil, water and forest management for their technical support. We acknowledge the freely available Landsat images from USGS GLOVIS, and land cover maps from the European Space Agency and National Geomatics Centre of China (NGCC). We appreciate the developers of Google Earth for making it possible to access historical high resolution images. We specifically thank the developers of the intensity analysis software for making it freely available online. Finally, we are grateful to the anonymous reviewers and editor for helping to improve the quality of the paper.

Funding

This research was funded by the Intra-Africa ACADEMY, project N0 2017-3052/001-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bright Danso Appiagyei.

Ethics declarations

Conflict of interest

The authors declare there are no conflict of interest.

Human and animal rights

The present article does not contain any human and animal studies conducted by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 491 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Appiagyei, B.D., Belhoucine-Guezouli, L., Bessah, E. et al. Simulating land use and land cover change in a semi-arid region from 1989 to 2039: the case of Hafir-Zariffet forest, Tlemcen, Algeria. GeoJournal 88, 4159–4173 (2023). https://doi.org/10.1007/s10708-023-10853-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10708-023-10853-2

Keywords

Navigation