Skip to main content
Log in

On discovering motifs and frequent patterns in spatial trajectories with discrete Fréchet distance

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

The discrete Fréchet distance (DFD) captures perceptual and geographical similarity between two trajectories. It has been successfully adopted in a multitude of applications, such as signature and handwriting recognition, computer graphics, as well as geographic applications. Spatial applications, e.g., sports analysis, traffic analysis, etc. require discovering similar subtrajectories within a single trajectory or across multiple trajectories. In this paper, we adopt DFD as the similarity measure, and study two representative trajectory analysis problems, namely, motif discovery and frequent pattern discovery. Due to the time complexity of DFD, these tasks are computationally challenging. We address that challenge with a suite of novel lower bound functions and a grouping-based solution. Our techniques apply directly when the analysis tasks are defined within the same or across multiple trajectories. An extensive empirical study on real trajectory datasets reveals that our approaches are 3 orders of magnitude faster than baseline solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Notes

  1. Intel architectures optimization manual: http://intel.ly/2lgN4rc

  2. http://chorochronos.datastories.org/

  3. We note that recently the authors of [36] have produced a more efficient approach [40], still considering the range query.

References

  1. Gudmundsson J, Thom A, Vahrenhold J (2012) Of motifs and goals: mining trajectory data. In: SIGSPATIAL

  2. Kwan M-P (2000) Interactive geovisualization of activity-travel patterns using three-dimensional geographical information systems: a methodological exploration with a large data set. Transportation Research Part C: Emerging Technologies, vol. 8(1)

  3. Lee J-G, Han J, Whang K-Y (2007) Trajectory clustering: a partition-and-group framework. In: SIGMOD

  4. Zheng Y (2015) Trajectory data mining: an overview. TIST, vol 6(3)

  5. Gudmundsson J, Valladares N (2015) A gpu approach to subtrajectory clustering using the fréchet distance. TPDS, vol 26(4)

  6. Zheng Y, Zhang L, Xie X, Ma W-Y (2009) Mining interesting locations and travel sequences from gps trajectories. In: WWW

  7. Toohey K, Duckham M (2015) Trajectory similarity measures. SIGSPATIAL Special 7(1):43–50

    Article  Google Scholar 

  8. Gudmundsson J, Laube P, Wolle T (2011) Computational movement analysis. In: Springer handbook of geographic information

  9. Sriraghavendra R, Karthik K, Bhattacharyya C (2007) Fréchet distance based approach for searching online handwritten documents. In: 9th International conference on document analysis and recognition, vol 1

  10. Wylie T, Zhu B (2013) Protein chain pair simplification under the discrete fréchet distance. IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol 10(6)

  11. Chambers EW, Wang Y (2013) Measuring similarity between curves on 2-manifolds via homotopy area. In: SoCG

  12. Brakatsoulas S, Pfoser D, Salas R, Wenk C (2005) On map-matching vehicle tracking data. In: VLDB

  13. Buchin K, Buchin M, Gudmundsson J, Löffler M, Luo J (2011) Detecting commuting patterns by clustering subtrajectories. International Journal of Computational Geometry & Applications, vol 21(03)

  14. Trajcevski G, Ding H, Scheuermann P, Tamassia R, Vaccaro D (2007) Dynamics-aware similarity of moving objects trajectories. In: GIS

  15. Xie D, Li F, Phillips JM (2017) Distributed trajectory similarity search. PVLDB 10(11):1478–1489

    Google Scholar 

  16. Yuan J, Zheng Y, Zhang C, Xie W, Xie X, Sun G, Huang Y (2010) T-drive: driving directions based on taxi trajectories. In: SIGSPATIAL

  17. Eiter T, Mannila H (1994) Computing discrete fréchet distance. Information Systems Department, Technical University of Vienna

  18. Bringmann K (2014) Why walking the dog takes time: Frechet distance has no strongly subquadratic algorithms unless seth fails. In: FOCS

  19. Agarwal P K, Avraham R B, Kaplan H, Sharir M (2014) Computing the discrete fréchet distance in subquadratic time. SIAM J Comput, vol 43(2)

  20. Tang B, Yiu M L, Mouratidis K, Wang K (2017) Efficient motif discovery in spatial trajectories using discrete fréchet distance. In: EDBT, pp 378–389

  21. Jeung H, Yiu ML, Zhou X, Jensen CS, Shen HT (2008) Discovery of convoys in trajectory databases. PVLDB, vol 1(1)

  22. Yi B-K, Jagadish HV, Faloutsos C (1998) Efficient retrieval of similar time sequences under time warping. In: ICDE

  23. Vlachos M, Kollios G, Gunopulos D (2002) Discovering similar multidimensional trajectories. In: ICDE

  24. Chen L, Özsu MT, Oria V (2005) Robust and fast similarity search for moving object trajectories. In: SIGMOD

  25. Alt H, Godau M (1995) Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5:75–91

    Article  MathSciNet  Google Scholar 

  26. Astefanoaei M, Cesaretti P, Katsikouli P, Goswami M, Sarkar R (2018) Multi-resolution sketches and locality sensitive hashing for fast trajectory processing. In: SIGSPATIAL

  27. Cao H, Mamoulis N, Cheung D W (2005) Mining frequent spatio-temporal sequential patterns. In: ICDM

  28. Cao H, Mamoulis N, Cheung D W (2007) Discovery of periodic patterns in spatiotemporal sequences. TKDE 19(4):453–467

    Google Scholar 

  29. Giannotti F, Nanni M, Pinelli F, Pedreschi D (2007) Trajectory pattern mining. In: SIGKDD

  30. Song R, Sun W, Zheng B, Zheng Y (2014) Press: A novel framework of trajectory compression in road networks. PVLDB 7(9):661–672

    Google Scholar 

  31. Wang Y, Zheng Y, Xue Y (2014) Travel time estimation of a path using sparse trajectories. In: SIGKDD

  32. Han J, Pei J, Mortazavi-Asl B, Pinto H, Chen Q, Dayal U, Hsu MC (2001) Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth. In: ICDE

  33. Yu Y, Cao L, Rundensteiner EA, Wang Q (2014) Detecting moving object outliers in massive-scale trajectory streams. In: SIGKDD

  34. Li X, Han J, Kim S, Gonzalez H (2007) Roam: Rule-and motif-based anomaly detection in massive moving object data sets. In: SDM, vol 7

  35. Buchin K, Diez Y, van Diggelen T, Meulemans W (2017) Efficient trajectory queries under the fréchet distance (gis cup). In: SIGSPATIAL

  36. Baldus J, Bringmann K (2017) A fast implementation of near neighbors queries for fréchet distance (gis cup). In: SIGSPATIAL

  37. Dütsch F, Vahrenhold J (2017) A filter-and-refinement-algorithm for range queries based on the fréchet distance (gis cup). In: SIGSPATIAL

  38. Wei H, Fellegara R, Wang Y, De Floriani L, Samet H (2018) Multi-level filtering to retrieve similar trajectories under the fréchet distance. In: SIGSPATIAL

  39. Werner M, Oliver D (2018) Acm sigspatial gis cup 2017: range queries under fréchet distance. SIGSPATIAL Special 10(1):24–27

    Article  Google Scholar 

  40. Bringmann K, Künnemann M, Nusser A (2019) Walking the Dog Fast in Practice: Algorithm Engineering of the Fréchet Distance. In: SoCG, vol 129

  41. Sinnott RW (1984) Virtues of the haversine. Sky and Telescope, vol 68(2)

  42. Alt H, Efrat A, Rote G, Wenk C (2003) Matching planar maps. In: SODA

  43. Buchin K, Buchin M, Gudmundsson J (2010) Constrained free space diagrams: a tool for trajectory analysis. IJGIS 24(7):1101–1125

    Google Scholar 

  44. Gagliardo A, Ioalè P, Filannino C, Wikelski M (2011) Homing pigeons only navigate in air with intact environmental odours: a test of the olfactory activation hypothesis with gps data loggers. PLoS One, vol 6(8)

Download references

Acknowledgments

Bo Tang was supported by the National Science Foundation of China (NSFC No. 61802163), the Education Department of Guangdong (Grant No. 2020KZDZX1184, 2020ZDZX3043), the Guangdong Provincial Key Laboratory (Grant No. 2020B121201001), the PCL Future Greater-Bay Area Network Facilities for Larg scale Experiments and Applications (LZC0019). Man Lung Yiu was supported by GRF 152050/19E from the Hong Kong RGC. Kyriakos Mouratidis was supported by by the Singapore Management University Lee Kong Chian Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, B., Yiu, M.L., Mouratidis, K. et al. On discovering motifs and frequent patterns in spatial trajectories with discrete Fréchet distance. Geoinformatica 26, 29–66 (2022). https://doi.org/10.1007/s10707-021-00438-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-021-00438-x

Keywords

Navigation