Skip to main content

Advertisement

Log in

Waste products as alternative phosphorus fertilisers part I: inorganic P species affect fertilisation effects depending on soil pH

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

One of the bottlenecks to efficient phosphorus (P) recycling is limited understanding of the relationships between inorganic P species in waste products and their P fertilisation effects. In this study, we characterised inorganic P species in seven waste products (two biomass ashes, meat bone meal, fish sludge, catering waste and two food waste-based digestate products) and two manure products (dairy and chicken manure) by: (1) Sequential chemical fractionation, (2) X-ray powder diffraction and (3) solid-state 31P MAS-NMR spectroscopy. We then used the characterisation data to explain the results of a bioassay studying the fertilisation effects of waste and manure products after application to a nutrient-deficient model soil that was limed to two pH levels (approximately pH 5.5 and 6.9 at pH level 1 and 2), with ryegrass (Lolium multiflorum) as the experimental crop. The P in waste products was mainly present as a complex mixture of inorganic P species, predominantly Ca phosphates with differing solubility. Fertilisation effects were largely explained by sequential fractionation data, with a positive relationship between apparent P use efficiency and the H2O-soluble inorganic P fraction at pH level 1 (R2 = 0.52) and a negative relationship between apparent P use efficiency and the HCl-soluble inorganic P fraction at pH level 2 (R2 = 0.66). X-ray powder diffraction and solid-state 31P MAS-NMR spectroscopy confirmed the sequential fractionation data, but provided little additional information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aue WP, Roufosse AH, Glimcher MJ, Griffin FG (1984) Solid-state P-31 nuclear magnetic resonance studies of synthetic phases of calcium phosphate: potential models of bone mineral. Biochemistry 23:6110–6114

    Article  CAS  PubMed  Google Scholar 

  • Bergmann W (1993) Ernährungsstörungen bei Kulturpflanzen: Entstehung, visuelle und analytische Diagnose. Gustav Fischer, Jena

    Google Scholar 

  • Bioforsk (2014) 2. Tabeller over virkningsgrad av husdyrgjødsel. Bioforsk Gjødslingshåndbok. http://www.bioforsk.no/ikbViewer/page/prosjekt/tema/artikkel?p_dimension_id=19190&p_menu_id=19211&p_sub_id=19191&p_document_id=97422&p_dim2=19606. Accessed 20 Mar 2015

  • Bleam WF, Pfeffer PE, Frye JS (1989) 31P solid-state nuclear magnetic resonance spectroscopy of aluminium phosphate minerals. Phys Chem Miner 16:455–464

    CAS  Google Scholar 

  • Brod E, Haraldsen TK, Krogstad T (2014) Combined waste resources as compound fertiliser to spring cereals. Acta Agric Scand Sect B Soil Plant Sci 64:329–340

    CAS  Google Scholar 

  • Brod E, Øgaard AF, Haraldsen TK, Krogstad T (2015) Waste products as alternative phosphorus fertilisers. Part II: predicting P fertilisation effects by chemical extraction. Nutr Cycl Agroecosyst. doi:10.1007/s10705-015-9731-4

  • Brown EH, Lehr JR, Frazier AW, Smith JP (1964) Calcium ammonium and calcium potassium pyrophosphate systems. Agric Food Chem 12:70–72

    Article  CAS  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  • Cabeza R, Steingrobe B, Römer W, Claassen N (2011) Effectiveness of recycled P products as P fertilizers, as evaluated in pot experiments. Nutr Cycl Agroecosyst 91:173–184

    Article  CAS  Google Scholar 

  • Coelho AA (2006) TOPAS V4.1, Bruker AXS. Karlsruhe, Germany

  • Condron LM, Turner BL, Cade-Menun BJ (2005) Chemistry and dynamics of soil organic phosphorus. In: Sims TJ, Sharpley AN (eds) Phosphorus: agriculture and the environment, Agronomy monograph, vol 46, 2nd edn. American Society of Agronomy, Inc., Crop Science Society of America Inc., Soil Science Society of America Inc., Madison, pp 87–121

    Google Scholar 

  • Egnér H, Riehm H, Domingo WR (1960) Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. Kungl Lantbrukshögskolans Annaler 26:199–215

    Google Scholar 

  • EN 13654-1 (2001) Soil improvers and growing media: determination of nitrogen. Part 1: modified Kjeldahl method. CEN, Brussels

    Google Scholar 

  • EN 13654-2 (2001) Soil improvers and growing media: determination of nitrogen. Part 2: dumas method. CEN, Brussels

    Google Scholar 

  • EN ISO 11885 (2009) Water quality: determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP–OES). CEN, Brussels

    Google Scholar 

  • Frossard E, Tekeley P, Grimal JY (1994) Characterization of phosphate species in urban sewage sludges by high-resolution solid-state 31P NMR. Eur J Soil Sci 45:403–408

    Article  CAS  Google Scholar 

  • Frossard E, Bauer JP, Lothe F (1997) Evidence of vivianite in FeSO4-flocculated sludges. Water Res 31:2449–2454

    Article  CAS  Google Scholar 

  • Frossard E, Skrabal P, Sinaj S, Bangerter F, Traore O (2002) Forms and exchangeability of inorganic phosphate in composted solid organic wastes. Nutr Cycl Agroecosyst 62:103–113

    Article  CAS  Google Scholar 

  • García-Albacete M, Martín A, Cartagena MC (2012) Fractionation of phosphorus biowastes: characterisation and environmental risk. Waste Manag 32:1061–1068

    Article  PubMed  Google Scholar 

  • Güngör K, Jürgensen A, Karthikeyan KG (2007) Determination of phosphorus speciation in dairy manure using XRD and XANES spectroscopy. J Environ Qual 36:1856–1863

    Article  PubMed  Google Scholar 

  • Hamilton H, Brod E, Hanserud H, Gracey E, Vestrum M, Steinhoff F, Mueller D, Brattebøe H (2015) Investigating cross-sectoral synergies through integrated aquaculture, fisheries and agricultural phosphorus assessments: Norway as a case. J Ind Ecol. doi:10.1111/jiec.12324

    Google Scholar 

  • Haraldsen TK, Andersen U, Krogstad T, Sørheim R (2011) Liquid digestate from anaerobic treatment of source-separated household waste as fertilizer to barley. Waste Manag Res 29:1271–1276

    Article  CAS  PubMed  Google Scholar 

  • He Z, Fortuna A-M, Senwo ZN, Tazisong IA, Honeycutt CW, Griffin TS (2006) Hydrochloric fractions in Hedley fractionation may contain inorganic and organic phosphates. Soil Sci Soc Am J 70:893–899

    Article  CAS  Google Scholar 

  • Hedley M, McLaughlin M (2005) Reactions of phosphate fertilizers and by-products in soils. In: Sims TJ, Sharpley AN (eds) Phosphorus: agriculture and the environment, Agronomy monograph, vol 46, 2nd edn. American Society of Agronomy Inc., Crop Science Society of America Inc., Soil Science Society of America Inc., Madison, pp 181–252

    Google Scholar 

  • Hedley MJ, Stewart JWB, Chauhan BS (1982) Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46:970–976

    Article  CAS  Google Scholar 

  • Henriksen A, Selmer-Olsen AR (1970) Automatic methods for determining nitrate and nitrite in water and soil extracts. Analyst 95:514–518

    Article  CAS  Google Scholar 

  • Hinedi ZR, Chang AC, Yesinowski JP (1989) Phosphorus-31 magic angle spinning nuclear magnetic resonance of wastewater sludges and sludge-amended soil. Soil Sci Soc Am J 53:1053–1056

    Article  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Hunger S, Cho H, Sims JT, Sparks DL (2004) Direct speciation of phosphorus in alum-amended poultry litter: solid-state 31P NMR investigation. Environ Sci Technol 38:674–681

    Article  CAS  PubMed  Google Scholar 

  • Hunger S, Sims JT, Sparks DL (2008) Evidence for struvite in poultry litter: effect of storage and drying. J Environ Qual 37:1617–1625

    Article  CAS  PubMed  Google Scholar 

  • ICDD (2013) The international centre for diffraction data. http://www.icdd.com/index.htm. Accessed 21 May–23 June 2014

  • Jeng A, Haraldsen TK, Vagstad N, Grønlund A (2004) Meat and bone meal as nitrogen fertilizer to cereals in Norway. Agric Food Sci 13:268–275

    Article  Google Scholar 

  • Keeling AA, Paton I, Mullett JAJ (1994) Germination and growth of plants in media containing unstable refuse-derived compost. Soil Biol Biochem 26:767–772

    Article  Google Scholar 

  • Kim B, Gautier M, Michel P, Gourdon R (2013) Physical–chemical characterization of sludge and granular materials from a vertical flow constructed wetland for municipal wastewater treatment. Water Sci Technol 68:2257–2263

    Article  CAS  PubMed  Google Scholar 

  • Kratz S, Haneklaus S, Schnug E (2010) Chemical solubility and agricultural performance of P containing recycling fertilizers. Landbauforschung vTI Agric For Res 60:227–240

    Google Scholar 

  • Krogstad T, Sogn TA, Asdal Å, Sæbø A (2005) Influence of chemically and biologically stabilized sewage sludge on plant-available phosphorous in soil. Ecol Eng 25:51–60

    Article  Google Scholar 

  • Krupa-Żuczek K, Kowalski Z, Wzorek Z (2008) Manufacturing of phosphoric acid from hydroxyapatite, contained in the ashes of the incinerated meat-bone wastes. Pol J Chem Technol 10:13–20

    Google Scholar 

  • Kuo S (1994) Phosphorus. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (eds) Methods of soil analysis Part 3, chemical methods. American Society of Agronomy, Inc., Madison, pp 869–919

    Google Scholar 

  • Liebisch F, Bünemann EK, Huguenin-Elie O, Jeangros B, Frossard E, Oberson A (2013) Plant phosphorus nutrition indicators evaluated in agricultural grasslands managed at different intensities. Eur J Agron 44:67–77

    Article  CAS  Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. Wiley, New York

    Google Scholar 

  • Meteorologisk Institutt (2013) Været i Norge. Meteorologisk Institutt. http://www.met.no/Klima/Varet_i_Norge/. Accessed 20 Mar 2015

  • Møberg JP, Petersen L (1982) Øvelsesvejledning til geologi og jordbundslære II. Den Kongelige Veterinær- og Landbohøyskole, København

    Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nanzer S, Oberson A, Huthwelker T, Eggenberger U, Frossard E (2014) The molecular environment of phosphorus in sewage sludge ash: implications for bioavailability. J Environ Qual 43:1050–1060

    Article  CAS  PubMed  Google Scholar 

  • Norwegian Ministry of Agriculture and Food (2003) Forskrift om gjødselvarer mv. av organisk opphav. http://www.lovdata.no/for/sf/ld/xd-20030704-0951.html#27. Accessed 27 Jan 2014

  • Øgaard AF (1996) Effect of fresh and composted cattle manure on phosphate retention in soil. Acta Agric Scand Sect B Soil Plant Sci 46:98–105

    Google Scholar 

  • Oladeji OO, O’Connor GA, Sartain JB (2008) Relative phosphorus phytoavailability of different phosphorus sources. Commun Soil Sci Plant Anal 39:2398–2410

    Article  CAS  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Gov Print Office, Washington, pp 1–19

    Google Scholar 

  • Ott C, Rechberger H (2012) The European phosphorus balance. Resour Conserv Recycl 60:159–172

    Article  Google Scholar 

  • Pierzynski GM, McDowell RW, Sims JT (2005) Chemistry, cycling and potential movement of inorganic phosphorus in soils. In: Sims TJ, Sharpley AN (eds) Phosphorus: agriculture and the environment, Agronomy monograph, vol 46, 2nd edn. American Society of Agronomy Inc., Crop Science Society of America Inc., Soil Science Society of America Inc., Madison, pp 53–86

    Google Scholar 

  • Rietveld H (1969) A profile refinement method for nuclear and magnetic structures. J Appl Cryst 2:65–71

    Article  CAS  Google Scholar 

  • Rothwell WP, Waugh JS, Yesinowski JP (1980) High-resolution variable-temperature P-31 NMR of solid calcium phosphates. J Am Chem Soc 102:2637–2643

    Article  CAS  Google Scholar 

  • Roufosse AH, Aue WP, Roberts JE, Glimcher MJ, Griffin RG (1984) Investigation of the mineral phase of bone by solid-state phosphorus-31 magic angle sample spinning nuclear magnetic resonance. Biochemistry 23:6115–6120

    Article  CAS  PubMed  Google Scholar 

  • Scarlett NV, Madsen I (2008) Quantitative Phase Analysis. In: Dinnebier RE, Billinge S (eds) Powder diffraction: theory and practice, 1st edn. RSC Publishing, Cambridge, pp 298–329

    Google Scholar 

  • Scarlett NVY, Madsen IC, Cranswick LMD, Lwin T, Groleau E, Stephenson G, Aylmore M, Agron-Olshina N (2002) Outcomes of the international union of crystallography commission on powder diffraction round robin on quantitative phase analysis: samples 2, 3, 4, synthetic bauxite, natural granodiorite and pharmaceuticals. J Appl Crystallogr 35:383–400

    Article  CAS  Google Scholar 

  • Selmer-Olsen AR (1971) Determination of ammonium in soil extracts by an automated indophenol method. Analyst 96:565–568

    Article  Google Scholar 

  • Sharpley A, Moyer B (2000) Phosphorus forms in manure and compost and their release during simulated rainfall. J Environ Qual 29:1462–1469

    Article  CAS  Google Scholar 

  • Smith KA, van Dijk TA (1987) Utilisation of phosphorus and potassium from animal manures on grassland and forage crops. In: van der Meer HG, Unwin RJ, van Dijk TA, Ennik GC (eds) Animal manure on grassland and fodders crops. Martinus Nijhoff Publishers, Dordrecht, pp 87–102

    Chapter  Google Scholar 

  • Taylor AW, Frazier AW, Gurney EL (1963) Solubility products of magnesium ammonium and magnesium potassium phosphates. J Chem Soc 59:1580–1584

    CAS  Google Scholar 

  • Toor GS, Hunger S, Peak JD, Sims JT, Sparks DL (2006) Advances in the characterization of phosphorus in organic wastes: environmental and agronomic applications. Adv Agron 89:1–72

    Article  Google Scholar 

  • Ylivainio K, Uusitalo R, Turtola E (2008) Meat bone meal and fox manure as P sources for ryegrass (Lolium multiflorum) grown on a limed soil. Nutr Cycl Agroecosyst 81:267–278

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the research projects CenBio (Bioenergy Innovation Centre, Grant No. 193817) and Innovative utilization of wood ash (Grant No. 215935). Both are co-funded by the Research Council of Norway and research and industry partners. We thank Sissel Jørgensen for the acquisition of solid-state 31P MAS-NMR spectra, Kurt Johansen for help with the bioassay and Jonas Sottmann for help with analyses of the XRD data. We also acknowledge the anonymous reviewers for their helpful comments on our script. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Brod.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1254 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brod, E., Øgaard, A.F., Hansen, E. et al. Waste products as alternative phosphorus fertilisers part I: inorganic P species affect fertilisation effects depending on soil pH. Nutr Cycl Agroecosyst 103, 167–185 (2015). https://doi.org/10.1007/s10705-015-9734-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-015-9734-1

Keywords

Navigation