Skip to main content
Log in

Ground State Quantum Vortex Proton Model

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A novel photon-based proton model is developed. A proton’s ground state is assumed to be coherent to the degree that all of its mass-energy precipitates into a single uncharged spherical structure. A quantum vortex, initiated by the strong force, but sustained in the proton’s ground state by the circular Unruh effect and a spherical Rindler horizon, is proposed to confine the proton’s mass-energy in its ground state. A direct connection between the circular Unruh effect, the zitterbewegung effect, spin, and general relativity is proposed. Such a structure acts as an uncharged zitterbewegung fermion, and may explain neutrino mass. A ground-state proton’s central zitterbewegung fermion is assumed to be surrounded by a halo of charge shells of both signs. Virtual photon standing waves are assumed to synchronize the inner shell with the central zitterbewegung fermion. The charge shells are proposed to be associated with isospin and proton g-factor. There are only two model inputs—proton mass and quantized electronic charge—and just one adjustable parameter. The adjustable parameter, reduced only by about 0.4% from an initial estimate, provides the proton’s experimentally determined magnetic moment to arbitrary precision. The resulting modeled proton charge radius agrees very well with the 2018 CODATA value. Magnetic moment and charge radius are calculated algebraically in a manner easily understood by undergraduate physics students. This proposed ground-state proton model could be considered a low-energy approximation to a full quantum chromodynamical proton model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sulkosky, V., et al.: Measurement of the generalized spin polarizabilities of the neutron in the low-Q2 region. Nat. Phys. 17, 687–692 (2021)

    Google Scholar 

  2. Bernard, V., Kaiser, N., Meißner, Ulf-G.: Chiral dynamics in nucleons and nuclei. Int. J. Mod. Phys. E 4, 193–344 (1995)

    ADS  Google Scholar 

  3. Greensite, J.: An Introduction to the Confinement Problem. Springer, Germany (2011)

    MATH  Google Scholar 

  4. Hansson, J.: A simple explanation of the non-appearance of physical gluons and quarks. Can. J. Phys. 80, 1093–1097 (2002)

    ADS  Google Scholar 

  5. Kovács, A.: Maxwell-Dirac Theory and Occam’s Razor: Unified Field, Elementary Particles, and Nuclear Interactions. Chapter The Electromagnetic Wave Equation Based Nuclear Model, pp. 101–130 (2019)

  6. Niehaus, A.: Trying an alternative Ansatz to quantum physics. Found. Phys. 52(2), 1–19 (2022)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Biermann, S., Erne, S., Gooding, C., Louko, J., Schmiedmayer, J., Unruh, W.G., Weinfurtner, S.: Unruh and analogue Unruh temperatures for circular motion in 3 + 1 and 2 + 1 dimensions. Phys. Rev. D 102(8), 085006 (2020)

    ADS  MathSciNet  Google Scholar 

  8. Lochan, K., Ulbricht, H., Vinante, A., Goyal, S.K.: Detecting acceleration-enhanced vacuum fluctuations with atoms inside a cavity. Phys. Rev. Lett. 125, 241301 (2020)

    ADS  Google Scholar 

  9. Lynch, M.H., Cohen, E., Hadad, Y., Kaminer, I.: Experimental observation of acceleration-induced thermality. Phys. Rev. D 104(2), 025015 (2021)

    ADS  Google Scholar 

  10. Matsas, G.: The Fulling-Davies-Unruh effect is mandatory: the Proton’s testimony. Int. J. Mod. Phys. D 11, 1573–1577 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Dewitt, B.S.: Quantum gravity: the new synthesis. In: Hawking SW, Israel W (eds) General Relativity: An Einstein Centenary Survey, pp. 680–745 (1979)

  12. Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870–892 (1976)

    ADS  Google Scholar 

  13. Davies, P.C.W.: Scalar production in Schwarzschild and Rindler metrics. J. Phys. A 8, 609–616 (1975)

    ADS  Google Scholar 

  14. Fulling, S.A.: Nonuniqueness of canonical field quantization in Riemannian space-time. Phys. Rev. D 7, 2850–2862 (1973)

    ADS  Google Scholar 

  15. Takagi, S.: Vacuum noise and stress induced by uniform acceleration: Hawking-Unruh effect in Rindler manifold of arbitrary dimensions. Prog. Theoret. Phys. Suppl. 88, 1–142 (1986)

    ADS  MathSciNet  Google Scholar 

  16. Unruh, W.G.: Physics Meets Philosophy at the Planck Scale. Cambridge University Press, Section “Black holes, dumb holes, and entropy”, pp. 152–173 (2001)

  17. Peskin, M., Schroeder, D.: An Introduction to Quantum Field Theory. Westview Press, Boulder (1995)

    Google Scholar 

  18. Levitt, M.H.: Spin Dynamics: Basics of Nuclear Magnetic Resonance. Wiley, New York (2001)

    Google Scholar 

  19. Peleg, Y., Pnini, R., Zaarur, E., Hecht, E.: Schaum’s Outline of Theory and Problems of Quantum Mechanics, 2nd edn. McGraw-Hill, New York (2010)

    Google Scholar 

  20. Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. Lond. A 17, 610–624 (1928)

    ADS  MATH  Google Scholar 

  21. Weyl, H.: Elektron und gravitation I. Zeitschrift für Physik 56, 330–352 (1929)

    ADS  MATH  Google Scholar 

  22. Heisenberg, W.: Über den Bau der Atomkerne. Z. Phys. 77, 1–11 (1932)

    ADS  MATH  Google Scholar 

  23. Wigner, E.: On the consequences of the symmetry of the nuclear Hamiltonian on the spectroscopy of nuclei. Phys. Rev. 51, 106–119 (1937)

    ADS  MATH  Google Scholar 

  24. Breit, G.: An interpretation of Dirac’s theory of the electron. Proc. Natl. Acad. Sci. 14, 553–559 (1928)

    ADS  MATH  Google Scholar 

  25. Greiner, W.: Relativistic Quantum Mechanics, 3rd edn. Springer, Germany (1995)

    Google Scholar 

  26. Schrödinger, E.: Über die kräftefreie Bewegung in der relativistischen Quantenmechanik, Berlin, pp. 418–428 (1930)

  27. Schrödinger, E.: Zur quantendynamik des elektrons, Berlin, pp. 63–72 (1931)

  28. Hestenes, D.: The zitterbewegung interpretation of quantum mechanics. Found. Phys. 20, 1213–1232 (1990)

    ADS  MathSciNet  Google Scholar 

  29. Hestenes, D.: Zitterbewegung in quantum mechanics. Found. Phys. 40, 1–54 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Barut, A.O., Zanghi, N.: Classical model of the Dirac electron. Phys. Rev. Lett. 52, 2009–2012 (1984)

    ADS  MathSciNet  Google Scholar 

  31. Niehaus, A.: A probabilistic model of spin and spin measurements. Found. Phys. 46, 3–13 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Kovács, A., Vassallo, G., Di Tommaso, A.O., Celani, F., Wang, D.: Maxwell-Dirac Theory and Occam’s Razor: Unified Field, Elementary Particles, and Nuclear Interactions (2019)

  33. Hestenes, D.: Space-Time Algebra, 2nd edn. Birkhäuser, New York (2015)

    MATH  Google Scholar 

  34. Sen, D.: The uncertainty relations in quantum mechanics. Curr. Sci. 107, 203–218 (2014)

    Google Scholar 

  35. Anastopoulos, C., Savvidou, N.: Coherences of accelerated detectors and the local character of the Unruh effect. J. Math. Phys. 53, 012107 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Shifman, M.: ITEP Lectures on Particle Physics and Field Theory, vol. 1, p. 292. World Scientific, Singapore (1999)

    MATH  Google Scholar 

  37. Baez, J.C., Huerta, J.: The algebra of grand unified theories. Bull. Am. Math. Soc. 47, 483–552 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Pvoh, B., Scholz, C., Rith, K., Zetsche, F.: Particles and Nuclei, p. 98. Springer, New York (2008)

    Google Scholar 

  39. Leader, E., Anselmino, M.: A crisis in the parton model: where, oh where is the proton’s spin? Z. Phys. C 41, 239–246 (1988)

    Google Scholar 

  40. Ashman, J., et al.: A measurement of the spin asymmetry and determination of the structure function g1 in deep inelastic muon-proton scattering. Phys. Lett. B 206, 364–370 (1988)

    ADS  Google Scholar 

  41. Hansson, J.: The “Proton Spin Crisis”—a quantum query. Prog. Phys. 3, 51–52 (2010)

    Google Scholar 

  42. Catillon, P., Cue, N., Gaillard, M.J., et al.: A search for the de Broglie particle internal clock by means of electron channeling. Found. Phys. 38, 659–664 (2008)

    ADS  Google Scholar 

  43. Wunderlich, C.: Trapped ion set to quiver. Nature 463, 37–39 (2010)

    ADS  Google Scholar 

  44. Gerritsma, R., et al.: Quantum simulation of the Dirac equation. Nature 463, 68–71 (2010)

    ADS  Google Scholar 

  45. LeBlanc, L.J., et al.: Direct observation of zitterbewegung in a Bose-Einstein condensate. N. J. Phys. 15, 073011 (2013)

    Google Scholar 

  46. Zhi-Yong, W., Cai-Dong, X.: Zitterbewegung in quantum field theory. Chin. Phys. B 17, 4170–4174 (2008)

    ADS  Google Scholar 

  47. Zahiri-Abyaneh, M., Farhoudi, M.: Zitterbewegung in external magnetic field: classic versus quantum approach. Found. Phys. 41, 1355–1374 (2011)

    ADS  MATH  Google Scholar 

  48. Baixauli, J.G.: The origin of up and down quarks. SciFed J. Quantum Phys. 3, 2 (2019)

    Google Scholar 

  49. Buchmann, A., Henley, E.M.: Intrinsic quadrupole moment of the nucleon. Phys. Rev. C 63, 015202 (2001)

    ADS  Google Scholar 

  50. PHENIX Collaboration. Creation of quark-gluon plasma droplets with three distinct geometries. Nat. Phys. 15, 214–220 (2019)

  51. Miranda-Colón, J.A.: Heuristic solution to the conundrum of the zitterbewegung. J. Mod. Phys. 13, 301–314 (2022)

    Google Scholar 

  52. Lowan, A.N., Blanch, G.: Tables of Planck’s radiation and photon functions*. J. Opt. Soc. Am. 30, 70–81 (1940)

    ADS  MathSciNet  MATH  Google Scholar 

  53. Duncan, M., Myrzakulov, R., Singleton, D.: Entropic derivation of \(F = ma\) for circular motion. Phys. Lett. B 703, 516–518 (2011)

    ADS  Google Scholar 

  54. Ohanian, H.: Spacetime and Gravitation, Chap. 8, 1st edn. Norton, New York (1976)

  55. Haug, E.G.: Newton’s and Einstein’s gravity in a new perspective for Planck masses and smaller sized objects. Astron. Astrophys. 8, 6–23 (2018)

    Google Scholar 

  56. Peratt, A.L.: Physics of the Plasma Universe, 2nd edn. Springer, New York (2014)

    MATH  Google Scholar 

Download references

Acknowledgements

Steven C. Verrall is the primary author. Micah Atkins and Andrew Kaminsky are assistant authors. Peter Lynch coauthored the Appendix. Steven C. Verrall is partly supported by UWL Faculty Research Grant 23-01-SV. Steven C. Verrall, Kelly S. Verrall, Micah Atkins, and Andrew Kaminsky developed the original concepts. Micah Atkins, Emily Friederick, and Andy Otto assisted with mathematical development and calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven C. Verrall.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Volume and Surface Area Derivations

Appendix: Volume and Surface Area Derivations

A spindle torus consists of an inner lemon surface and an apple outer surface. The polar cross-section of a spindle torus is shown in Fig. 1. The lemon is generated by rotating an arc of half-angle \(\phi _m\) less than \(\pi /2\) about its chord, with \(\phi _m=\phi _l=\cos ^{-1}(r_z/R)\). The half-angle, \(\phi _l\), is shown in Fig. 1. Note that \(\phi\) denotes latitude, as used in geophysics. It does not denote the azimuthal angle of conventional physics spherical coordinates. The surface area is given by

$$\begin{aligned} A=2\pi R^2\int _{-\phi _m}^{\phi _m}(\cos \phi -\cos \phi _m)d\phi . \end{aligned}$$
(30)

The volume is given by

$$\begin{aligned} V=\pi R^3\int _{-\phi _m}^{\phi _m}(\cos \phi -\cos \phi _m)^2\cos \phi d\phi . \end{aligned}$$
(31)

These integrals can be evaluated analytically, giving

$$\begin{aligned} A=4\pi R^2(\sin \phi _m-\phi _m\cos \phi _m) \end{aligned}$$
(32)
$$\begin{aligned} V=\tfrac{4}{3}\pi R^3\left[ \sin ^{3}\phi _m-\tfrac{3}{4}\cos \phi _m(2\phi _m-\sin 2\phi _m)\right] \end{aligned}$$
(33)

The apple is generated by rotating an arc of half-angle \(\phi _m\) greater than \(\pi /2\) about its chord, with \(\phi _m=\phi _a=\pi -\cos ^{-1}(r_z/R)=\pi -\phi _l\). The half-angle, \(\phi _a\), is shown in Fig. 1. Note that Eqs. (32) and (33) are valid for both the lemon and apple.

With the refined GSQV proton model, R becomes an adjustable parameter. The quantity \(r_z\) is replaced by the radius of the polar charge-exclusion zone,

$$\begin{aligned} r_a=R-\lambda _c/2 . \end{aligned}$$
(34)

The outer charge shell is modeled as a semicircle revolved about flat polar caps. Pappus’s centroid theorems are applied. The area of a surface of revolution, generated by rotating a plane curve about an external axis in the same plane, is equal to the product of the arc length of the curve and the distance travelled by the centroid of the curve. In this case, the curve is a semicircular arc with centroid located \(2R/\pi\) more distant than \(r_a\). The arc length of the semicircle is \(\pi R\), and the distance travelled by the centroid is \(2\pi (r_a+2R/\pi )\). The area of each endcap is \(\pi r_a^2\). Therefore, including both endcaps, the outer shell surface area is given by

$$\begin{aligned} A_o=2\pi ^2R\left( r_a+\tfrac{2R}{\pi }\right) +2\pi r_a^2 . \end{aligned}$$
(35)

The volume of a solid of revolution, generated by rotating a plane figure about an external axis in the same plane, is equal to the product of the area of the figure and the distance travelled by its centroid. In this case, the plane figure is a semicircular area with centroid located \(4R/3\pi\) more distant than \(r_a\). The area of the semicircle is \(\pi R^2/2\), and the distance travelled by the centroid is \(2\pi (r_a+4R/3\pi )\). The cylindrical volume between the two endcaps is \(2\pi r_a^2R\). Therefore, the outer shell volume is given by

$$\begin{aligned} V_o=\pi ^2 R^2\left( r_a+\tfrac{4R}{3\pi }\right) +2\pi r_a^2R . \end{aligned}$$
(36)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verrall, S.C., Atkins, M., Kaminsky, A. et al. Ground State Quantum Vortex Proton Model. Found Phys 53, 28 (2023). https://doi.org/10.1007/s10701-023-00669-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-023-00669-y

Keywords

Navigation