Skip to main content
Log in

Functors of Actions

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In this document, we introduce a novel formalism for any field theory and apply it to the effective field theories of large-scale structure. The new formalism is based on functors of actions composing those theories. This new formalism predicts the actionic fields. We discuss our findings in a cosmological gravitology framework. We present these results with a cosmological inference approach and give guidelines on how we can choose the best candidate between those models with some latest understanding of model selection using Bayesian inference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that support the findings of this study are openly available in AofEFT.

Notes

  1. As the term suggests, it is the study of different gravitational theories within the framework of cosmology. On the other hand, we could also see the perspective in which we develop cosmology using gravitational theories. In that case we could use the terms gravitological cosmology or gravitational cosmology. These terms depend on what one is inspired from.

  2. Note that the name functors of actions can be also replaced by relations of actions or any other name that best describes these novel theories. We give this name as we currently understand this best describes these mathematical entities.

  3. https://github.com/lontelis/AofEFT.

References

  1. Abbott, B.P., Abbott, R., Abbott, T.D., et al.: Prospects for observing and localizing gravitational-wave transients with advanced LIGO, advanced Virgo and KAGRA. Living Rev. Relat. 21, 3 (2018). arXiv:1304.0670 [gr-qc]

    ADS  Google Scholar 

  2. Aghamousa, A., Aguilar, J., Ahlen, S., Alam, S., Allen, L. E., Prieto, C. A., Annis, J., Bailey, S., Balland, C., Ballester, O., et al.: The DESI experiment part I: science, targeting, and survey design. arXiv:1611.00036 (2016)

  3. Akrami, Y., Brax, P., Davis, A.-C., Vardanyan, V.: Neutron star merger GW170817 strongly constrains doubly coupled bigravity. Phys. Rev. D 97, 124010 (2018)

    ADS  MathSciNet  Google Scholar 

  4. Amendola, L., Appleby, S., Avgoustidis, A., Bacon, D., et al.: Cosmology and fundamental physics with the euclid satellite. arXiv:1606.00180 (2016)

  5. Antoniadis, I., Arkani-Hamed, N., Dimopoulos, S., Dvali, G.: Phys. Lett. B 436, 257 (1998)

    ADS  Google Scholar 

  6. Babichev, E., Charmousis, C., Esposito-Farese, G., Lehébel, A.: Stability of a black hole and the speed of gravity waves within self-tuning cosmological models. arXiv:1712.04398 (2017)

  7. Babichev, E., Charmousis, C., Esposito-Farèse, G., Lehébel, A.: Hamiltonian vs stability and application to Horndeski theory. arXiv:1803.11444 (2018)

  8. Bailin, D., Love, A.: Kaluza–Klein theories. Rep. Prog. Phys. 50, 1087 (1987)

    ADS  MathSciNet  Google Scholar 

  9. Baumann, D., Green, D., Lee, H., Porto, R.A.: Signs of analyticity in single-field inflation. Phys. Rev. D 93, 023523 (2016). arXiv:1502.07304 [hep-th]

    ADS  MathSciNet  Google Scholar 

  10. Baumann, D., Nicolis, A., Senatore, L., Zaldarriaga, M.: Cosmological non-linearities as an effective fluid. J. Cosmol. Astropart. Phys. 2012, 051 (2012). arXiv:1004.2488 [astro-ph.CO]

    Google Scholar 

  11. Blas, D., Lim, E.: Phenomenology of theories of gravity without Lorentz invariance: the preferred frame case. Int. J. Mod. Phys. D 23, 1443009 (2014). arXiv:1412.4828 [gr-qc]

    ADS  MathSciNet  MATH  Google Scholar 

  12. Brink, L., Di Vecchia, P., Howe, P.S.: A locally supersymmetric and reparametrization invariant action for the spinning string. Phys. Lett. B 65, 471 (1976)

    ADS  Google Scholar 

  13. Buchdahl, H.A.: Non-linear Lagrangians and cosmological theory. Mon. Not. RAS 150, 1 (1970)

    ADS  Google Scholar 

  14. Caprini, C., Figueroa, D.G.: Cosmological backgrounds of gravitational waves. Class. Quantum Gravity 35, 163001 (2018). arXiv:1801.04268 [astro-ph.CO]

    ADS  MathSciNet  MATH  Google Scholar 

  15. Carrasco, J.J.M., Hertzberg, M.P., Senatore, L.: The effective field theory of cosmological large scale structures. J. High Energy Phys. 2012, 82 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Carroll, S.M., Duvvuri, V., Trodden, M., Turner, M.S.: Is cosmic speed-up due to new gravitational physics? Phys. Rev. D 70, 043528 (2004)

    ADS  Google Scholar 

  17. Charmousis, C.: Modifications of Einstein’s Theory of Gravity at Large Distances, pp. 25–56. Springer, New York (2015)

    Google Scholar 

  18. Chen, Y., Maldacena, J., Witten, E.: On the black hole/string transition. arXiv:2109.08563 (2021)

  19. Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C.: Modified gravity and cosmology. Phys. Rep. 513, 1 (2012). arXiv:1106.2476 [astro-ph.CO]

    ADS  MathSciNet  Google Scholar 

  20. Colas, T., d’Amico, G., Senatore, L., Zhang, P., Beutler, F.: Efficient cosmological analysis of the SDSS/BOSS data from the effective field theory of large-scale structure. J. Cosmol. Astropart. Phys. 2020, 001 (2020). arXiv:1909.07951 [astro-ph.CO]

    Google Scholar 

  21. de Rham, C., Gabadadze, G., Tolley, A.J.: Resummation of massive gravity. Phys. Rev. Lett. 106, 231101 (2011). arXiv:1011.1232 [hep-th]

    ADS  Google Scholar 

  22. Deser, S., Zumino, B.: Consistent supergravity. Phys. Lett. B 62, 335 (1976)

    ADS  MathSciNet  Google Scholar 

  23. Dvali, G., Gabadadze, G., Porrati, M.: 4D gravity on a brane in 5D Minkowski space. Phys. Lett. B 485, 208 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Einstein, A.: Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. SPA der Wissenschaften 142, 1–8 (1917)

    MATH  Google Scholar 

  25. Eisenstein, D.J., Zehavi, I., Hogg, D.W.: Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560 (2005)

    ADS  Google Scholar 

  26. Englert, F., Brout, R.: Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321 (1964)

    ADS  MathSciNet  Google Scholar 

  27. Ezquiaga, J.M., Zumalacárregui, M.: Dark energy after GW170817: dead ends and the road ahead. Phys. Rev. Lett. 119, 251304 (2017)

    ADS  Google Scholar 

  28. Ezquiaga, J.M., Zumalacárregui, M.: Dark energy in light of multi-messenger gravitational-wave astronomy. Front. Astron. Space Sci. 5, 44 (2018)

    ADS  Google Scholar 

  29. Friedman, A.: Über die Krümmung des Raumes. Z. Phys. 10, 377 (1922)

    ADS  Google Scholar 

  30. Gleyzes, J., Langlois, D., Piazza, F., Vernizzi, F.: Exploring gravitational theories beyond Horndeski. J. Cosmol. Astropart. Phys. 2015, 018 (2015). arXiv:1408.1952 [astro-ph.CO]

    MathSciNet  Google Scholar 

  31. Higgs, P.W.: Broken symmetries and the masses of Gauge bosons. Phys. Rev. Lett. 13, 508 (1964)

    ADS  MathSciNet  Google Scholar 

  32. Higgs, P.W.: Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132 (1964)

    ADS  Google Scholar 

  33. Horndeski, G.W.: Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theoret. Phys. 10, 363 (1974)

    MathSciNet  Google Scholar 

  34. Hořava, P.: Quantum gravity at a Lifshitz point. Phys. Rev. D 79, 084008 (2009). arXiv:0901.3775 [hep-th]

    ADS  MathSciNet  Google Scholar 

  35. Hu, W., Sawicki, I.: Models of f(R) cosmic acceleration that evade solar system tests. Phys. Rev. D 76, 064004 (2007). arXiv:0705.1158 [astro-ph]

    ADS  Google Scholar 

  36. Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90 (2007)

    Google Scholar 

  37. Kobayashi, T., Yamaguchi, M., Yokoyama, J.: Generalized G-inflation? Inflation with the most general second-order field equations? Progr. Theoret. Phys. 126, 511 (2011)

    ADS  MATH  Google Scholar 

  38. Koutsoumbas, G., Ntrekis, K., Papantonopoulos, E., Saridakis, E.N.: Unification of dark matter–dark energy in generalized Galileon theories. J. Cosmol. Astropart. Phys. 2018, 003 (2018)

    MATH  Google Scholar 

  39. Leclercq, F.: Bayesian large-scale structure inference and cosmic web analysis. arXiv:1512.04985arXiv:1512.04985 (2015).

  40. Lombriser, L., Taylor, A.: Breaking a dark degeneracy with gravitational waves. J. Cosmol. Astropart. Phys. 2016, 031 (2016)

    Google Scholar 

  41. Nicolis, A., Rattazzi, R.: Classical and quantum consistency of the DGP model. J. High Energy Phys. 2004, 059 (2004)

    MathSciNet  Google Scholar 

  42. Ntelis, P., Ealet, A., Escoffier, S., Hamilton, J.-C., Hawken, A.J., Le Goff, J.-M., Rich, J., Tilquin, A.: The scale of cosmic homogeneity as a standard ruler. J. Cosmol. Astropart. Phys. 2018, 014 (2018). arXiv:1810.09362 [astro-ph.CO]

    Google Scholar 

  43. Ntelis, P., Hamilton, J.-C., Le Goff, J.-M., et al.: Exploring cosmic homogeneity with the BOSS DR12 galaxy sample. J. Cosmol. Astropart. Phys. 2017, 019 (2017). arXiv:1702.02159 [astro-ph.CO]

    Google Scholar 

  44. Overduin, J.M., Wesson, P.S.: Kaluza–Klein gravity. Phys. Rep. 283, 303 (1997)

    ADS  MathSciNet  Google Scholar 

  45. Pajer, E., Zaldarriaga, M.: On the renormalization of the effective field theory of large scale structures. J. Cosmol. Astropart. Phys. 2013, 037 (2013). arXiv:1301.7182 [astro-ph.CO]

    Google Scholar 

  46. Perenon, L., Marinoni, C., Piazza, F.: Diagnostic of Horndeski theories. J. Cosmol. Astropart. Phys. 2017, 035 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Perez, F., Granger, B.E.: IPython: a system for interactive scientific computing. Comput. Sci. Eng. 9, 21 (2007)

    Google Scholar 

  48. Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory, An Introduction to Quantum Field Theory. Addison-Wesley, Reading (1995)

    Google Scholar 

  49. Piazza, F., Vernizzi, F.: Effective field theory of cosmological perturbations. Class. Quantum Gravity 30, 214007 (2013). arXiv:1307.4350 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  50. Aghanim, N., Akrami, Y., Ashdown, M., Planck Collaboration, et al.: Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020)

    Google Scholar 

  51. Polyakov, A.M.: Quantum geometry of bosonic strings. Phys. Lett. B 103, 207 (1981)

    ADS  MathSciNet  Google Scholar 

  52. Porto, R.A.: The effective field theorist’s approach to gravitational dynamics. Astron. Astrophys. 633, 1 (2016)

    MathSciNet  MATH  Google Scholar 

  53. Randall, L., Sundrum, R.: Large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  54. Seiberg, N., Witten, E.: String theory and noncommutative geometry. J. High Energy Phys. 1999, 032 (1999)

    MathSciNet  MATH  Google Scholar 

  55. Sotiriou, T.P., Faraoni, V.: f(R) theories of gravity. Rev. Mod. Phys. 82, 451 (2010)

    ADS  MATH  Google Scholar 

  56. Starobinsky, A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99 (1980)

    ADS  MATH  Google Scholar 

  57. Virtanen, P., Gommers, R., Oliphant, T.E., Contributors, S. . .: SciPy 1.0–Fundamental Algorithms for Scientific Computing in PythonarXiv e-prints. arXiv:1907.10121, arXiv:1907.10121 (2019)

  58. Walt, S.V.D., Colbert, S.C., Varoquaux, G.: The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22 (2011)

    Google Scholar 

  59. Wikipedia contributors.: Covariant derivative—Wikipedia, the free encyclopedia (2018). accessed 16 Aug 2018

  60. Wilks, S.S.: The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 9, 60 (1938)

    MATH  Google Scholar 

  61. Witten, E.: Anti-de Sitter space and holography. Adv. Theoret. Math. Phys. 2, 253 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

PN acknowledges financial support from “Centre National d’Études Spatiales” (CNES). PN would like to thank F. Piazza for his inspirational phrase: “Here, we are trying to open new possibilities!”. PN is grateful for comments on the draft from L. Amendola, J.P. Solovej, and discussion from A. Blanchard, F.H. Couannier, E.N. Saridakis, Y.Dalianis which improved the presentation of this work. We acknowledge open libraries support IPython [47], Matplotlib [36], NUMPY [58] SciPy 1.0 [57], https://github.com/lontelis/cosmopitCOSMOPIT [42, 43].

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Pierros Ntelis. The first draft of the manuscript was written by Pierros Ntelis and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pierros Ntelis.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: The Higgs Matter Field

Appendix A: The Higgs Matter Field

As [26, 31, 32] have shown, the matter fields have one main component, the Higgs field, which gives mass to the other fields of the standard model of particle physics. In particular the action for the Higgs field is the following:

$$\begin{aligned} S_\mathrm{m, Higgs} = c^4 \int d^4x \sqrt{\eta } {\mathcal {L}}_\mathrm{Higgs}\left[ \eta _{\mu \nu }, \overrightarrow{\phi }(\eta ),A_{\mu } \right] \end{aligned}$$
(A1)

where \(\eta\) is the determinant of the Minkowski metric, \(\eta _{\mu \nu }\), which is taken as, \(-+++\), \(\overrightarrow {\phi }(\eta )\) is a vector of real scalar fields and \(A_{\mu }\) is a real vector field used for the interactions. The Lagrangian density is composed as:

$$\begin{aligned} {\mathcal {L}}_\mathrm{Higgs}\left[ \eta _{\mu \nu },\overrightarrow {\phi }(\eta ),A_{\mu } \right] = - \frac{1}{2} \left( \nabla \phi _1 \right) ^2 - \frac{1}{2} \left( \nabla \phi _2 \right) ^2 - V\left( \phi _1^2 + \phi _2^2 \right) - \frac{1}{4} F_{\mu \nu }F^{\mu \nu } \end{aligned}$$
(A2)

where \(\phi _i\equiv \phi _i(\eta _{\mu \nu }),\ i = 1,2\) are the two real scalar fields which interact with the \(A_{\mu }\) field and \(\left( \nabla \phi _i \right) ^2 \equiv \nabla _{\mu }\phi _i \nabla ^{\mu } \phi _i \equiv \eta _{\mu \nu } \nabla ^{\mu }\phi _i \nabla ^{\nu } \phi _i\) . Note that this \(\nabla ^{\mu }\) is different than the \(\nabla ^{\mu }\) in Sect. 2.1. Here this \(\nabla ^{\mu }\) is defined as:

$$\begin{aligned} \nabla _{\mu } \phi _1&= \partial _{\mu } \phi _1 - e A_{\mu } \phi _2 \end{aligned}$$
(A3)
$$\begin{aligned} \nabla _{\mu } \phi _2&= \partial _{\mu } \phi _2 - e A_{\mu } \phi _1 \end{aligned}$$
(A4)
$$\begin{aligned} F_{\mu \nu }&= \partial _{\mu }A_{\nu } - \partial _{\nu }A_{\mu } \end{aligned}$$
(A5)

where e is a dimensionless coupling constant. Note that \({\mathcal {L}}_\mathrm{Higgs}\left[ \eta _{\mu \nu },\overrightarrow{\mathbf{\phi}}(\eta ),A_{\mu } \right]\) is invariant under simultaneous gauge transformation of the first kind on \(\phi _1\pm i \phi _2\) and of the second kind on \(A_{\mu }\) . In the case where \(V'(\phi _0^2) = 0\) and \(V'' ( \phi ^2_0 ) > 0\), where \(\phi _0\) is the ground state of either \(\phi _i\), then spontaneous breakdown of U(1) symmetry occurs. Note that we present a generic description of the Higgs field, which can be applied to more specific interactions which constitute the standard model.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ntelis, P., Morris, A. Functors of Actions. Found Phys 53, 29 (2023). https://doi.org/10.1007/s10701-022-00628-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-022-00628-z

Keywords

Navigation