Skip to main content
Log in

Is contextuality about the identity of random variables?

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Recent years have seen new general notions of contextuality emerge. Most of these employ context-independent symbols to represent random variables in different contexts. As an example, the operational theory of (Spekkens in Phys Rev A 71(5):52108, 2005) treats an observable being measured in two different contexts identically. Non-contextuality in this approach is the impossibility of drawing ontological distinctions between identical elements of the operational theory. However, a recent collection of work seeks to exploit context-dependent symbols of random variables to interpret contextuality (Kujala et al. in Phys Rev Lett 115(15):150401, 2015; Dzhafarov and Kujala in Phys Scr T163:014009, 2014). This approach associates contextuality with the possibility of imposing a particular joint distribution on random variables recorded under different experimental contexts. This paper compares these two different treatments of random variables and highlights the limitations of the context-dependent approach as a physical theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. For simplicity, from now on we will use \(a_{i}^{j}\) instead of \(a_{q_{i}}^{c_{j}}\), where subscripts i indicate different observables and j indicate different contexts.

  2. It is clear that one can check whether the two random variables \(a_{\mathbb {A}_{1}}^{(\mathbb {A}_{1}, \mathbb {B}_{1})}\) and \(a_{\mathbb {A}_{1}}^{(\mathbb {A}_{1}, \mathbb {B}_{2})}\) have the same distribution only when they have a same value.

References

  1. Spekkens, R.W.: Contextuality for preparations, transformations, and unsharp measurements. Phys. Rev. A 71(5), 52108 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  2. Kujala, J.V., Dzhafarov, E.N., Larsson, J.-Å.: Necessary and sufficient conditions for an extended noncontextuality in a broad class of quantum mechanical systems. Phys. Rev. Lett. 115(15), 150401 (2015)

    Article  ADS  Google Scholar 

  3. Dzhafarov, E.N., Kujala, J.V.: Contextuality is about identity of random variables. Phys. Scr. T163, 014009 (2014)

    Article  ADS  Google Scholar 

  4. Kochen, K., Specker, E.P.: The problem of hidden variables in quantum mechanics. In: The Logico-Algebraic Approach to Quantum Mechanics, pp. 293–328 (1967)

  5. Abramsky, S., Brandenburger, A.: The sheaf-theoretic structure of non-locality and contextuality. New J. Phys. 13(11), 113036 (2011)

    Article  ADS  Google Scholar 

  6. Cabello, A., Severini, S., Winter, A.: Graph-theoretic approach to quantum correlations. Phys. Rev. Lett. 112(4), 040401 (2014)

    Article  ADS  Google Scholar 

  7. Acín, A., Fritz, T., Leverrier, A., Sainz, A.: A combinatorial approach to nonlocality and contextuality. Commun. Math. Phys. 334(2), 533–628 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. Mazurek, M.D., Pusey, M.F., Kunjwal, R., Resch, K.J., Spekkens, R.W.: An experimental test of noncontextuality without unphysical idealizations. Nat. Commun. 7, 11780 (2016)

    Article  ADS  Google Scholar 

  9. Fine, A.: Hidden variables, joint probability, and the bell inequalities. Phys. Rev. Lett. 48(5), 291 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  10. Dzhafarov, E.N., Kujala, J.V.: Context-content systems of random variables: the contextuality-by-default theory. J. Math. Psychol. 74, 11–33 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. Dzhafarov, E.N., Kujala, J.V., Larsson, J.-Å.: Contextuality-by-default: a brief overview of ideas, concepts, and terminology. In: Atmanspacher, H., Filk, T., Pothos, E., (eds.), Quantum Interaction: 9th International Conference, QI 2015, Filzbach, Switzerland, July 15–17, 2015, Revised Selected Papers, pp. 12–23. Springer International Publishing (2016)

  12. Dzhafarov, E.N., Kujala, J.V.: Selectivity in probabilistic causality: where psychology runs into quantum physics. J. Math. Psychol. 56(1), 54–63 (2012)

    Article  MathSciNet  Google Scholar 

  13. Shimony, A.: Contextual hidden variables theories and Bell’s inequalities. Br. J. Philos. Sci. 35(1), 25–45 (1984)

    Article  MathSciNet  Google Scholar 

  14. Dzhafarov, E.N., Kon, M.: On universality of classical probability with contextually labeled random variables. J. Math. Psychol. 85, 17–24 (2018)

    Article  MathSciNet  Google Scholar 

  15. de Barros, J.A., Kujala, A., Oas, G.: Negative probabilities and contextuality. J. Math. Psychol. 74, 34–45 (2016)

    Article  MathSciNet  Google Scholar 

  16. Simmons, A.W., Wallman, J.J., Pashayan, H., Bartlett, S.D., Rudolph, T.: Contextuality under weak assumptions related content. New J. Phys. 19(3), 033030 (2017)

    Article  ADS  Google Scholar 

  17. Jarrett, J.P.: On the physical significance of the locality conditions in the Bell arguments. Noûs 18(4), 569 (1984)

    Article  MathSciNet  Google Scholar 

  18. Shimony, A.: Controllable and uncontrollable non-locality. Found. Quantum Mech. Light New Technol. 225–230 (1984)

  19. Maudlin, T.: Quantum Non-Locality and Relativity: Metaphysical Intimations of Modern Physics. Wiley, New York (2011)

    Book  Google Scholar 

  20. Brask, J.B., Chaves, R.: Bell scenarios with communication. J. Phys. A 50(9), 094001 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  21. Liang, Y.-C., Spekkens, R.W., Wiseman, H.M.: Specker’s parable of the overprotective seer: a road to contextuality, nonlocality and complementarity. Phys. Rep. 506(1), 1–39 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  22. Kunjwal, R.: Contextuality beyond the Kochen-Specker theorem. PhD thesis, The Institute of Mathematical Sciences, Chennai (2016)

  23. Specker, E.: Die Logik Nicht Gleichzeitig Entscheidbarer Aussagen. In: Ernst Specker Selecta, Birkhäuser Basel, pp. 175–182 (1990)

  24. Kunjwal, R., Ghosh, S.: Minimal state-dependent proof of measurement contextuality for a qubit. Phys. Rev. A 89(4), 042118 (2014)

    Article  ADS  Google Scholar 

  25. Dzhafarov, E.N., Kujala, J.V., Larsson, J.-Å.: Contextuality in three types of quantum-mechanical systems. Found. Phys. 45(7), 762–782 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  26. Leggett, A.J., Garg, A.: Quantum mechanics versus macroscopic realism: is the flux there when nobody looks? Phys. Rev. Lett. 54(9), 857–860 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  27. Kunjwal, R., Heunen, C., Fritz, T.: Quantum realization of arbitrary joint measurability structures. Phys. Rev. A 89(5), 052126 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Aliakbarzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliakbarzadeh, M., Kitto, K. Is contextuality about the identity of random variables?. Found Phys 51, 14 (2021). https://doi.org/10.1007/s10701-021-00402-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-021-00402-7

Keywords

Navigation