Skip to main content
Log in

Testing a Quantum Inequality with a Meta-analysis of Data for Squeezed Light

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In quantum field theory, coherent states can be created that have negative energy density, meaning it is below that of empty space, the free quantum vacuum. If no restrictions existed regarding the concentration and permanence of negative energy regions, it might, for example, be possible to produce exotic phenomena such as Lorentzian traversable wormholes, warp drives, time machines, violations of the second law of thermodynamics, and naked singularities. Quantum Inequalities (QIs) have been proposed that restrict the size and duration of the regions of negative quantum vacuum energy that can be accessed by observers. However, QIs generally are derived for situations in cosmology and are very difficult to test. Direct measurement of vacuum energy is difficult and to date no QI has been tested experimentally. We test a proposed QI for squeezed light by a meta-analysis of published data obtained from experiments with optical parametric amplifiers and balanced homodyne detection. Over the last three decades, researchers in quantum optics have been trying to maximize the squeezing of the quantum vacuum and have succeeded in reducing the variance in the quantum vacuum fluctuations to \(-\,15\) dB. To apply the QI, a time sampling function is required. In our meta-analysis different time sampling functions for the QI were examined, but in all physically reasonable cases the QI is violated by much or all of the measured data. This brings into question the basis for QI. Possible explanations are given for this surprising result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bekenstein, J.: If vacuum energy can be negative, why is mass always positive?: Uses of the subdominant trace energy condition. Phys. Rev. D 88, 125005 (2013)

    Article  ADS  Google Scholar 

  2. Visser, M.: Lorentzian Wormholes, From Einstein to Hawking. AIP, Springer, New York (1995)

    Google Scholar 

  3. Ford, L., Roman, T.: Restrictions on negative energy density in flat spacetime. Phys. Rev. D 55, 2082 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  4. Davies, P., Ottewill, A.: Detection of negative energy: 4-dimensional examples. Phys. Rev. D 65, 104014 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  5. Ford, L.: Negative energy densities in quantum field theory. Int. J. Mod. Phys. A 25, 2355 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  6. Riek, C., Sulzer, P., Seeger, M., Moskalenko, A.S., Burkard, G., Seletskiy, D.V., Leitenstorfer, A.: Subcycle quantum electrodynamics. Nature 541, 376 (2017)

    Article  ADS  Google Scholar 

  7. Ford, L.: Quantum coherence effects and the second law of thermodynamics. Proc. R Soc. Lond. Ser. A 364, 227 (1978)

    Article  ADS  Google Scholar 

  8. Ford, L.: Constraints on negative-energy fluxes. Phys. Rev. D 4, 3972 (1991)

    Article  ADS  Google Scholar 

  9. Marecki, P.: Application of quantum inequalities to quantum optics. Phys. Rev. A 66, 053801 (2002)

    Article  ADS  Google Scholar 

  10. Vahlbruch, H., Mehmet, M., Danzmann, K., Schnabel, R.: Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys. Rev. Lett. 117, 110801 (2016)

    Article  ADS  Google Scholar 

  11. Marecki, P.: Balanced homodyne detectors in quantum field theory. Phys. Rev. A 77, 012101 (2008)

    Article  ADS  Google Scholar 

  12. Marecki, P.: Balanced homodyne detectors and Casimir energy densities. J. Phys. A 41, 164037 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Pfenning, M.: Quantum inequalities for the electromagnetic field. Phys. Rev. D 65, 024009 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  14. Gardiner, C., Savage, C.: A multimode quantum theory of a degenerate parametric amplifier in a cavity. Opt. Commun. 50, 173 (1984)

    Article  ADS  Google Scholar 

  15. Collett, M., Walls, D.: Squeezing spectra for nonlinear optical systems. Phys. Rev. A 32, 2887 (1985)

    Article  ADS  Google Scholar 

  16. Polzit, E., Carri, J., Kimble, H.: Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit. Appl. Phys. B 55, 279 (1992)

    Article  ADS  Google Scholar 

  17. Suzuki, S., Yonezawa, H., Kannari, F., Sasaki, M., Furusawa, A.: 7dB quadrature squeezing at 860nm with periodically poled KTiOPO\(_4\). Appl. Phys. Lett. 89, 061116 (2006)

    Article  ADS  Google Scholar 

  18. Takeno, Y., Takahashi, G., Furusawa, A.: Observation of \(-\,9\) dB quadrature squeezing with improvement of phase stability in homodyne measurement. Opt. Exp. 15, 4321 (2007)

    Article  ADS  Google Scholar 

  19. Smithey, D., Beck, M., Raymer, M., Faridani, A.: Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum. Phys. Rev. Lett. 70, 1244 (1993)

    Article  ADS  Google Scholar 

  20. Wu, L., Kimble, H., Hall, J., Wu, H.: Generation of squeezed states by parametric down conversion. Phys. Rev. Lett. 57, 2520 (1986)

    Article  ADS  Google Scholar 

  21. Zhang, T., Goh, K., Chou, C., Lodahl, P., Kimble, H.: Quantum teleportation of light beams. Phys. Rev. A 67, 033802 (2003)

    Article  ADS  Google Scholar 

  22. Tanimura, T., Akamatsu, D., Yokoi, Y., Furusawa, A., Kozuma, M.: Generation of a squeezed vacuum resonant on a rubidium \(D_{1}\) line with periodically poled KTiOPO\(_4\). Opt. Lett. 31, 2344 (2006)

    Article  ADS  Google Scholar 

  23. Breitenbach, G., Illuminati, F., Shiller, S., Mlynek, J.: Broadband detection of squeezed vacuum: a spectrum of quantum states. Europhys. Lett. 44(2), 192 (1998)

    Article  ADS  Google Scholar 

  24. Aoki, T., Takahashi, G., Furusawa, A.: Squeezing at 946nm with periodically poled KTiOPO\(_4\). Opt. Exp. 14, 6930 (2006)

    Article  ADS  Google Scholar 

  25. Hetet, G., Gloecki, O., Pilynas, K., Harb, C., Buchler, B., Bachor, H., Lam, P.: Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line. J. Phys. B 40, 221 (2007)

    Article  ADS  Google Scholar 

  26. Hirano, T., Kotani, K., Ishibashi, T., Okude, S., Kuwamoto, T.: 3 dB squeezing by single-pass parametric amplification in a periodically poled KTiOPO\(_4\) crystal. Opt. Lett. 30, 1722 (2005)

    Article  ADS  Google Scholar 

  27. Fewster, C.J., Teo, E.: Bounds on negative energy densities in static space-times. Phys. Rev. D 59, 104016 (1999)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are very grateful to Peter Milonni and Larry Ford for helpful discussions and comments. We would like to thank the Institute for Advanced Studies At Austin and H. E. Puthoff for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Jordan Maclay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Derivation of Marecki’s Quantum Inequality

Appendix A: Derivation of Marecki’s Quantum Inequality

Marecki [9] derives a Quantum Inequality for squeezed light and squeezed vacuum following the general approach of Fewster and Teo [27] and Pfenning [13]. We briefly describe his derivation to clarify the comparisons to the OPA data. Marecki defines the operator variance of the normally ordered electric field\(\ \varDelta E^{2}(x,t)\):

$$\begin{aligned} \varDelta E^{2}(x,t)=E^{2}(x,t)-\langle E^{2}(x,t)\rangle _{vac} \end{aligned}$$
(A.1)

and considers a time sampling of the field squared

$$\begin{aligned} \varDelta =\int _{-\infty }^{+\infty }dtf(t)\varDelta E^{2}(x,t) \end{aligned}$$
(A.2)

where

$$\begin{aligned} 1=\int _{-\infty }^{+\infty }dtf(t) \end{aligned}$$
(A.3)

He also mentions the possibility of including a frequency sampling function \(\mu _{p}=\)\(\mu (\omega _{p}-\omega _{0})\), peaked at \(\omega _{0}\), that reflects the frequency response of the apparatus measuring the variance. Since it is necessary to use a frequency sampling function to get finite results for \(\varDelta ,\) we will include it in our derivations. However, we note that there is a potential consistency issue using an independently selected frequency sampling function since the time sampling function f(t) implies a frequency selection determined by its Fourier transform. Using the Coulomb gauge, the vector potential is

$$\begin{aligned} A_{i}({\mathbf {x}},t)= & {} \frac{1}{\sqrt{(2\pi )^{3}}}\int \frac{d^{3}k}{\sqrt{2\omega _{k}}}\nonumber \\&\times \sum _{\alpha =1,2}{\mathbf {e}}_{i}^{\alpha }({\mathbf {k}})\{a_{\alpha }^{\dag }({\mathbf {k}})e^{ikx}+a_{\alpha }({\mathbf {k}})e^{-ikx}\} \end{aligned}$$
(A.4)

where \(\omega _{k}=|k|\) and \(\alpha \) denotes the two polarization states which are normalized and orthogonal to \({\mathbf {k}}\). In the exponentials, \(kx=-{\mathbf {k}}\cdot {\mathbf {x}}+\omega t\) represents the scalar product. The electric field operator is

$$\begin{aligned} E_{i}=-\frac{\partial A_{i}}{\partial t} \end{aligned}$$
(A.5)

The expectation value of the time sampled free vacuum field squared is

$$\begin{aligned} \langle E^{2}\rangle _{vac}= & {} \int _{-\infty }^{+\infty }dtf(t)\langle E^{2}({\mathbf {x}},t)\rangle _{vac} \end{aligned}$$
(A.6)
$$\begin{aligned}= & {} \frac{1}{2(2\pi )^{2}}\int \mu _{k}d^{3}k\mu _{p}d^{3}p\sqrt{\omega _{k} \omega _{p}}2\pi f_{FT}(\omega _{p}-\omega _{k})\nonumber \\&\times \sum _{\alpha ,\beta =1,2}{\mathbf {e}}_{i}^{\alpha }({\mathbf {k}}){\mathbf {e}}_{i}^{\beta }({\mathbf {p}} )\delta _{\alpha \beta }\delta ({\mathbf {p}}-{\mathbf {k}}) \end{aligned}$$
(A.7)

where we have used the commutator \([a_{\alpha }({\mathbf {p}}),a_{\beta }^{\dag }({\mathbf {k}})]=\delta _{\alpha \beta }\delta ({\mathbf {p}}-{\mathbf {k}})\) and included the frequency function. The Fourier transform of the time sampling function f(t) is defined as

$$\begin{aligned} f_{FT}(\omega )=\frac{1}{2\pi }\int _{-\infty }^{+\infty }dtf(t)e^{-i\omega t} \end{aligned}$$
(A.8)

Integrating Eq. A.7 over k, using the unity normalization of the polarization vectors \( {\displaystyle \sum \limits _{i}} {\mathbf {e}}_{i}^{\alpha }({\mathbf {k}}){\mathbf {e}}_{i}^{\alpha }({\mathbf {p}})=1\) , and that \(f_{FT}(0)=1/2\pi \) because of the f(t) nomalization, gives

$$\begin{aligned} \langle E^{2}\rangle _{vac}=\frac{1}{(2\pi )^{3}}\int (\mu _{p}^{2}\omega _{p})d^{3}p \end{aligned}$$
(A.9)

Substituting this result into the expression for the variance \(\varDelta \) gives, after integration over time,

$$\begin{aligned} \varDelta= & {} \frac{1}{2(2\pi )^{2}}\int d^{3}kd^{3}p\mu _{k}\mu _{p}\sqrt{\omega _{k}\omega _{p}}\nonumber \\&\times \sum _{\alpha ,\beta =1,2}{\mathbf {e}}_{i}^{\alpha } ({\mathbf {k}}){\mathbf {e}}_{i}^{\beta }({\mathbf {p}})\{a_{\alpha }^{\dag } ({\mathbf {k}})a_{\beta }({\mathbf {p}})e^{i(-{\mathbf {k}}+{\mathbf {p}}){\mathbf {x}}} f_{FT}(\omega _{p}-\omega _{k})\nonumber \\&-a_{\alpha }({\mathbf {k}})a_{\beta }({\mathbf {p}})e^{i({\mathbf {k}}+{\mathbf {p}} ){\mathbf {x}}}f_{FT}(\omega _{p}+\omega _{k})+HC\} \end{aligned}$$
(A.10)

where HC is the Hermitian conjugate. To derive a quantum inequality, Marecki defines a vector operator \(B_{i}(\omega )\) and computes the integral over frequency of the norm of \({\mathbf {B}}\) which has to be positive

$$\begin{aligned} \int _{0}^{\infty }d\omega B_{i}^{\dag }(\omega )B_{i}(\omega )>0 \end{aligned}$$
(A.11)

We choose

$$\begin{aligned} B_{i}(\omega )= & {} \frac{1}{\sqrt{2\pi ^{2}}}\int d^{3}p\sqrt{\omega _{p}} \nonumber \\&\times \sum _{\alpha ,\beta =1,2}{\mathbf {e}}_{i}^{\alpha }({\mathbf {p}})\{a_{\alpha }(p)(f^{1/2})_{FT}^{*}(\omega -\omega _{p})e^{i{{\mathbf {p}}}{{\mathbf {x}}}}\nonumber \\&- a_{\alpha }^{\dag }(p)(f^{1/2})_{FT}^{*}(\omega +\omega _{p})e^{-i{{\mathbf {p}}}{{\mathbf {x}}}}\} \end{aligned}$$
(A.12)

and substitute this into Eq. A.11, and use the result in Eq. A.10. After taking the expectation value with respect to state A, we obtain Eq. 4 in Sect. 2. Note that in Eq. A.12, \((f^{1/2})_{FT}^{*}(\omega - \omega _{p})\) means the complex conjugate of the Fourier transform of the square root of f(t).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maclay, G.J., Davis, E.W. Testing a Quantum Inequality with a Meta-analysis of Data for Squeezed Light. Found Phys 49, 797–815 (2019). https://doi.org/10.1007/s10701-019-00286-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-019-00286-8

Keywords

Navigation