Skip to main content
Log in

Gravitational Collapse in Quantum Einstein Gravity

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The existence of spacetime singularities is one of the biggest problems of nowadays physics. According to Penrose, each physical singularity should be covered by a “cosmic censor” which prevents any external observer from perceiving their existence. However, classical models describing the gravitational collapse usually results in strong curvature singularities, which can also remain “naked” for a finite amount of advanced time. This proceedings studies the modifications induced by asymptotically safe gravity on the gravitational collapse of generic Vaidya spacetimes. It will be shown that, for any possible choice of the mass function, quantum gravity makes the internal singularity gravitationally weak, thus allowing a continuous extension of the spacetime beyond the singularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Geroch, R.P.: Local characterization of singularities in general relativity. J. Math. Phys. 9, 450 (1967)

    Article  ADS  MathSciNet  Google Scholar 

  2. Geroch, R.P.: What is a singularity in general relativity? Ann. Phys. 48, 526 (1968)

    Article  ADS  Google Scholar 

  3. Hawking, S.W., Penrose, R.: The singularities of gravitational collapse and cosmology. Proc. R. Soc. Lond. Ser. A 314, 529 (1970). https://doi.org/10.1098/rspa.1970.0021

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Penrose, R.: Riv. Nuovo Cimento 1, 252 (1969)

    Google Scholar 

  5. Joshi, P.S.: Gravitational Collapse and Spacetime Singularities (2012)

  6. Bonanno, A., Reuter, M.: Renormalization group improved black hole spacetimes. Phys. Rev. D 62(4), 043008 (2000). https://doi.org/10.1103/PhysRevD.62.043008

    Article  ADS  Google Scholar 

  7. Koch, B., Saueressig, F.: Structural aspects of asymptotically safe black holes. Class. Quantum Gravity 31(1), 015006 (2014). https://doi.org/10.1088/0264-9381/31/1/015006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Lauscher, O., Reuter, M.: Flow equation of quantum Einstein gravity in a higher-derivative truncation. Phys. Rev. D 66(2), 025026 (2002). https://doi.org/10.1103/PhysRevD.66.025026

    Article  ADS  MathSciNet  Google Scholar 

  9. Codello, A., Percacci, R.: Fixed points of higher-derivative gravity. Phys. Rev. Lett. 97(22), 221301 (2006). https://doi.org/10.1103/PhysRevLett.97.221301

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Torres, R.: Singularity-free gravitational collapse and asymptotic safety. Phys. Lett. B 733, 21 (2014). https://doi.org/10.1016/j.physletb.2014.04.010

    Article  ADS  MATH  Google Scholar 

  11. Torres, R., Fayos, F.: Singularity free gravitational collapse in an effective dynamical quantum spacetime. Phys. Lett. B 733, 169 (2014). https://doi.org/10.1016/j.physletb.2014.04.038

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Vaidya, P.C.: An analytical solution for gravitational collapse with radiation. ApJ 144, 943 (1966). https://doi.org/10.1086/148692

    Article  ADS  MathSciNet  Google Scholar 

  13. Kuroda, Y.: Naked singularities in the Vaidya spacetime. Prog. Theor. Phys. 72, 63 (1984). https://doi.org/10.1143/PTP.72.63

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Papapetrou, A.: Formation of a singularity and causality. In: Dadhich, M., Krishna Rao, J., Narlikar, J.V., Vishveshwara, C.V. (eds.) A Random Walk in Relativity and Cosmology, pp. 184–191. Wiley Eastern Ltd., New Delhi (1985)

    Google Scholar 

  15. Bonanno, A., Koch, B., Platania, A.: Cosmic censorship in quantum Einstein gravity. Class. Quantum Gravity 34(9), 095012 (2017). https://doi.org/10.1088/1361-6382/aa6788

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Strokov, V.N., Lukash, V.N., Mikheeva, E.V.: Black-and-white hole as a space-time with integrable singularity. Int. J. Mod. Phys. A31(02n03), 1641018 (2016). https://doi.org/10.1142/S0217751X16410189

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Vaidya, P.C.: Nonstatic solutions of einstein’s field equations for spheres of fluids radiating energy. Phys. Rev. 83, 10 (1951). https://doi.org/10.1103/PhysRev.83.10

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Wang, A., Wu, Y.: Generalized Vaidya solutions. Gen. Relativ. Gravit. 31, 107 (1999). https://doi.org/10.1023/A:1018819521971

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Mkenyeleye, M.D., Goswami, R., Maharaj, S.D.: Gravitational collapse of generalized Vaidya spacetime. Phys. Rev. D 90(6), 064034 (2014). https://doi.org/10.1103/PhysRevD.90.064034

    Article  ADS  Google Scholar 

  20. Joshi, P.S.: Global Aspects in Gravitation and Cosmology. International series of monographs on physics. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  21. Israel, W.: The formation of black holes in nonspherical collapse and cosmic censorship. Can. J. Phys. 64, 120 (1986). https://doi.org/10.1139/p86-018

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Dwivedi, I.H., Joshi, P.S.: On the nature of naked singularities in Vaidya spacetimes. Class. Quantum Gravity 6, 1599 (1989). https://doi.org/10.1088/0264-9381/6/11/013

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Dwivedi, I.H., Joshi, P.S.: On the nature of naked singularities in Vaidya spacetimes: II. Class. Quantum Gravity 8(7), 1339 (1991). http://stacks.iop.org/0264-9381/8/i=7/a=010

    Article  ADS  MathSciNet  Google Scholar 

  24. Tipler, F.J.: On the nature of singularities in general relativity. Phys. Rev. D 15, 942 (1977). https://doi.org/10.1103/PhysRevD.15.942

    Article  ADS  MathSciNet  Google Scholar 

  25. Wetterich, C.: Exact evolution equation for the effective potential. Phys. Lett. B 301, 90 (1993). https://doi.org/10.1016/0370-2693(93)90726-X

    Article  ADS  Google Scholar 

  26. Morris, T.R.: The exact renormalization group and approximate solutions. Int. J. Mod. Phys. A 9, 2411 (1994). https://doi.org/10.1142/S0217751X94000972

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Reuter, M., Wetterich, C.: Effective average action for gauge theories and exact evolution equations. Nucl. Phys. B 417, 181 (1994). https://doi.org/10.1016/0550-3213(94)90543-6

    Article  ADS  Google Scholar 

  28. Reuter, M.: Nonperturbative evolution equation for quantum gravity. Phys. Rev. D 57, 971 (1998). https://doi.org/10.1103/PhysRevD.57.971

    Article  ADS  MathSciNet  Google Scholar 

  29. Bonanno, A., Reuter, M.: Quantum gravity effects near the null black hole singularity. Phys. Rev. D 60(8), 084011 (1999). https://doi.org/10.1103/PhysRevD.60.084011

    Article  ADS  MathSciNet  Google Scholar 

  30. Bonanno, A., Reuter, M.: Spacetime structure of an evaporating black hole in quantum gravity. Phys. Rev. D 73(8), 083005 (2006). https://doi.org/10.1103/PhysRevD.73.083005

    Article  ADS  MathSciNet  Google Scholar 

  31. Torres, R., Fayos, F.: On the quantum corrected gravitational collapse. Phy. Lett. B 747, 245 (2015). https://doi.org/10.1016/j.physletb.2015.05.078

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the organizers of the workshop Lemaître for their hospitality and for creating a highly stimulating scientific atmosphere. B.K. acknowledges Fondecyt 1161150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessia Platania.

Additional information

Proceedings based on the talk given by A.P. at the workshop Lemaître, “Black Holes, Spacetime Singularities and Gravitational Waves”, held at the Vatican observatory, 9th–12th May 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonanno, A., Koch, B. & Platania, A. Gravitational Collapse in Quantum Einstein Gravity. Found Phys 48, 1393–1406 (2018). https://doi.org/10.1007/s10701-018-0195-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-018-0195-7

Keywords

Navigation