Skip to main content
Log in

Bell’s Theorem and the Issue of Determinism and Indeterminism

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The paper considers the claim that quantum theories with a deterministic dynamics of objects in ordinary space-time, such as Bohmian mechanics, contradict the assumption that the measurement settings can be freely chosen in the EPR experiment. That assumption is one of the premises of Bell’s theorem. I first argue that only a premise to the effect that what determines the choice of the measurement settings is independent of what determines the past state of the measured system is needed for the derivation of Bell’s theorem. Determinism as such does not undermine that independence (unless there are particular initial conditions of the universe that would amount to conspiracy). Only entanglement could do so. However, generic entanglement without collapse on the level of the universal wave-function can go together with effective wave-functions for subsystems of the universe, as in Bohmian mechanics. The paper argues that such effective wave-functions are sufficient for the mentioned independence premise to hold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  2. Bell, J.S., Shimony, A., Horne, M.A., Clauser, J.F.: An exchange on local beables. Dialectica 39, 85–110 (1985)

    Article  MathSciNet  Google Scholar 

  3. Bohm, D.: A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. Phys. Rev. 85, 166–193 (1952)

    Article  ADS  MATH  Google Scholar 

  4. Colbeck, R., Renner, R.: No extension of quantum theory can have improved predictive power. Nat. Commun. (2011). doi:10.1038/ncomms1416

  5. Conway, J.H., Kochen, S.: The strong free will theorem. Not. Am. Math. Soc. 56, 226–232 (2009)

    MATH  MathSciNet  Google Scholar 

  6. de Broglie, L.: La nouvelle dynamique des quanta. In: Electrons et photons. Rapports et discussions du cinquième Conseil de physique tenu à Bruxelles du 24 au 29 octobre 1927 sous les auspices de l’Institut international de physique Solvay, pp. 105–132. Gauthier-Villars, Paris (1928). [English translation in Bacciagaluppi, G., Valentini, A.: Quantum Theory at the Crossroads. Reconsidering the 1927 Solvay Conference, pp. 341–371. Cambridge University Press, Cambridge (2009)]

  7. Dorato, M., Esfeld, M.: GRW as an ontology of dispositions. Stud. Hist. Philos. Mod. Phys. 41, 41–49 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dürr, D., Goldstein, S., Zanghì, N.: Quantum Physics Without Quantum Philosophy. Springer, Berlin (2013)

    Book  Google Scholar 

  9. Frankfurt, H.G.: Freedom of the will and the concept of a person. J. Philos. 68, 5–20 (1971). Reprinted in Frankfurt, H.G.: The Importance of What We care About. Philosophical Essays. Cambridge: Cambridge University Press. Chapter 2, (1988)

  10. Ghirardi, G.C., Grassi, R., Benatti, F.: Describing the macroscopic world: closing the circle within the dynamical reduction program. Found. Phys. 25, 5–38 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Ghirardi, G.C., Pearle, P., Rimini, A.: Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A 42, 78–89 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  12. Ghirardi, Gian Carlo, Rimini, Alberto, Weber, Tullio: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470–491 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Gisin, N.: Stochastic quantum dynamics and relativity. Helv. Phys. Acta 62, 363–371 (1989)

    MathSciNet  Google Scholar 

  14. Gisin, N.: Propensities in a non-deterministic physics. Synthese 89, 287–297 (1991)

    Article  MathSciNet  Google Scholar 

  15. Goldstein, S., Norsen, T., Tausk, D.V., Zanghì, N.: Bell’s theorem. http://www.scholarpedia.org/article/Bell’s_theorem (2011)

  16. Goldstein, S., Tausk, D.V., Tumulka, R., Zanghì, N.: What does the free will theorem actually prove? Not. Am. Math. Soc. 57, 1451–1453 (2010)

    MATH  Google Scholar 

  17. Hofer-Szabó, G., Rédei, M., Szabó, L.E.: The Principle of the Common Cause. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  18. Maudlin, T.: Quantum Non-locality and Relativity, 3rd edn. Wiley-Blackwell, Chichester (2011)

    Book  Google Scholar 

  19. Norsen, T.: Local causality and completeness: Bell vs. Jarrett. Found. Phys. 39, 273–294 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Norsen, T.: J. S. Bell’s concept of local causality. Am. J. Phys. 79, 1261–1275 (2011)

    Article  ADS  Google Scholar 

  21. Price, H.: Time’s Arrow and Archimedes’ Point. New Directions for the Physics of Time. Oxford University Press, Oxford (1996)

    Google Scholar 

  22. Seevinck, M.P.: Can quantum theory and special relativity peacefully coexist? Invited white paper for Quantum Physics and the Nature of Reality, John Polkinghorne 80th Birthday Conference. St Annes College, Oxford. 26–29 September 2010. http://arxiv.org/abs/1010.3714 (2010)

  23. Seevinck, M.P., Uffink, J.: Not throwing out the baby with the bathwater: Bell’s condition of local causality mathematically ‘sharp and clean’. In: Dieks, D., Gonzalez, W., Hartmann, S., Uebel, T., Weber, M. (eds.) Explanation, Prediction and Confirmation. New Trends and Old Ones Reconsidered, pp. 425–450. Springer, Dordrecht (2011)

    Chapter  Google Scholar 

  24. Tumulka, R.: A relativistic version of the Ghirardi–Rimini–Weber model. J. Stat. Phys. 125, 825–844 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Tumulka, R.: Comment on the free will theorem. Found. Phys. 34, 186–197 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  26. Tumulka, R.: The point processes of the GRW theory of wave function collapse. Rev. Math. Phys. 21, 155–227 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wüthrich, C.: Can the world be shown to be indeterministic after all? In: Beisbart, C., Hartmann, S. (eds.) Probabilities in Physics, pp. 365–390. Oxford University Press, Oxford (2011)

    Chapter  Google Scholar 

Download references

Acknowledgments

I’m grateful to Nicolas Gisin and Travis Norsen for discussions of the topic of this paper and to an anonymous referee for very helpful comments on the original submission.

Conflict of interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Esfeld.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esfeld, M. Bell’s Theorem and the Issue of Determinism and Indeterminism. Found Phys 45, 471–482 (2015). https://doi.org/10.1007/s10701-015-9883-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-015-9883-8

Keywords

Navigation