Skip to main content
Log in

Quantum Control in Foundational Experiments

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We describe a new class of experiments designed to probe the foundations of quantum mechanics. Using quantum controlling devices, we show how to attain a freedom in temporal ordering of the control and detection of various phenomena. We consider wave–particle duality in the context of quantum-controlled and the entanglement-assisted delayed-choice experiments. Then we discuss a quantum-controlled CHSH experiment and measurement of photon’s transversal position and momentum in a single set-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. It was first discussed by von Weizsäcker [23] and briefly mentioned by Bohr in his review of the Einstein–Bohr discussions [19].

References

  1. Wheeler, J.A., Zurek, W.H. (eds.): Quantum Theory and Measurement. Princeton University Press, Princeton (1984)

    Google Scholar 

  2. Schlipp, P.A. (ed.): Albert Einstein, Philosopher-Scientist: The Library of Living Philosophers. MJF Books, New York ([1949] 1970)

  3. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  4. Bruß, D., Leuchs, G.: Lectures on Quantum Information. Wiley-VCH, Weinheim (2007)

    MATH  Google Scholar 

  5. Greenberger, D., Hentschel, K., Weinert, F. (eds.): Compendium of Quantum Physics. Springer, Berlin (2009)

  6. Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  7. Grangier, P., Roger, G., Aspect, A.: Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences. Europhys. Lett. 1, 173–179 (1986)

    Article  ADS  Google Scholar 

  8. Longhi, S.: Quantum-optical analogies using photonic structures. Laser Photon. Rev. 3, 243–261 (2009)

    Article  Google Scholar 

  9. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer, Dordrecht (1995)

    MATH  Google Scholar 

  10. von Neumann, J.: Mathematical Foundations of Quantum Mechanics, chap. VI. Princeton University Press, Princeton (1955). (transl. by Beyer, E.T.)

    Google Scholar 

  11. Schrödinger, E.: Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften. 23, 807–808; (transl. in Wheeler, J.A., Zurek, W.H. (eds.): Quantum Theory and Measurement); 152–167 (1935)

  12. Marshall, W., Simon, C., Penrose, R., Bouwmeester, D.: Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  13. Hornberger, K., et al.: Quantum interference of clusters and molecules. Rev. Mod. Phys. 84, 157–173 (2012)

    Article  ADS  Google Scholar 

  14. Poot, M., van der Zant, H.S.J.: Mechanical systems in the quantum regime. Phys. Rep. 511, 273–335 (2012)

    Article  ADS  Google Scholar 

  15. Ionicioiu, R., Terno, D.R.: Proposal for a quantum delayed-choice experiment. Phys. Rev. Lett 107, 230–406 (2011)

    Article  Google Scholar 

  16. Jacques, V., et al.: Experimental realization of wheelers delayed-choice Gedanken experiment. Science 315, 966–968 (2007)

    Article  ADS  Google Scholar 

  17. Scully, M.O., Englert, B.G., Walter, H.: Quantum optical tests of complementarity. Nature 351, 111–116 (1991)

    Article  ADS  Google Scholar 

  18. Greenstein, G., Zajonc, A.G.: The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics. Jones and Bartlett, Boston (1997)

    Google Scholar 

  19. Bohr, N.: Discussions with Einstein on epistemic problems of atomic physics. In: Schlipp, P.A. (ed.) Albert Einstein, Philosopher-Scientist: The Library of Living Philosophers, pp. 200–241. MJF Books, New York (2007)

    Google Scholar 

  20. Stapp, H.: Complementarity principle. In: Greenberger, D., Hentschel, K., Weinert, F. (eds.) Compendium of Quantum Physics, pp. 111–113. Springer, Berlin (2009)

    Chapter  Google Scholar 

  21. Wheeler, J.A.: The “past” and the “delayed-choice” double-slit experiment. In: Marlow, A.R. (ed.) Mathematical Foundations of Quantum Mechanics, pp. 9–48. Academic Press, New York (1978)

    Google Scholar 

  22. Leggett, A.J.: Delayed-choice experiments. In: Bruß, D., Leuchs, G. (eds.) Lectures on Quantum Information, pp. 161–166. Wiley-VCH, Weinheim (2007)

    Google Scholar 

  23. von Weizsäcker, C.F.F.: Zur Deutung der Quantenmechanik. Z. Phys. 118, 489–509 (1941)

    Article  Google Scholar 

  24. Auccaise, R., et al.: Experimental analysis of the quantum complementarity principle. Phys. Rev. A 85, 032121 (2012)

    Article  ADS  Google Scholar 

  25. Tang, J.-S., et al.: Realization of quantum wheelers delayed-choice experiment. Nat. Photonics 6, 600–604 (2012)

    Article  ADS  Google Scholar 

  26. Kaiser, F., et al.: Entanglement-enabled delayed-choice experiment. Science 338, 637–640 (2012)

    Article  ADS  Google Scholar 

  27. Ionicioiu, R., Jennewein, T., Mann, R. B., Terno, D. R.: Does Determinism Conflict with Wave–Particle Realism? Proposal for an Experimental, Test. arXiv:1211.0979

  28. Clauser, F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)

    Article  ADS  Google Scholar 

  29. Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966)

    Article  ADS  MATH  Google Scholar 

  30. Brandenburger, A., Yanofsky, N.: A classification of hidden-variable properties. J. Phys. A 41, 425–302 (2008)

    Article  MathSciNet  Google Scholar 

  31. Born, M., Wolf, E.: Principles of Optics. Oxford University Press, Oxford (1999)

    Book  Google Scholar 

  32. Lindner, N.H., Terno, D.R.: The effect of focusing on polarization qubits. J. Mod. Opt. 52, 1177–1188 (2005)

    Article  ADS  MATH  Google Scholar 

  33. Walborn, S.P., Monken, C.H., Pádua, S., Souto Ribeiro, P.H.: Spatial correlations in parametric down-conversion. Phys. Rep. 495, 87–139 (2010)

    Article  ADS  Google Scholar 

  34. Tasca, D.S., et al.: Continuous variable quantum computation with spatial degrees of freedom of photons. Phys. Rev. A 83, 052325 (2011)

    Article  ADS  Google Scholar 

  35. Ananthaswamy, A.: Quantum shadows. New Sci. 217(2898), 36–39 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

R.G. and L.C. thank CAPES, CNPQ and INCT-IQ for partial financial support. T.J and R.B.M were supported in part by the Natural Sciences and Engineering Research Council of Canada. D.R.T. thanks the Center for Quantum Technologies at the National University of Singapore for hospitality, Berge Englert, Valerio Scarani and Vlatko Vedral for useful discussions and Alla Terno for the help with visualizations. We are grateful to Chuan-Feng Li and Jian-Shun Tang for kindly sharing their data with us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Terno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Céleri, L.C., Gomes, R.M., Ionicioiu, R. et al. Quantum Control in Foundational Experiments. Found Phys 44, 576–587 (2014). https://doi.org/10.1007/s10701-014-9792-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9792-2

Keywords

Navigation