Skip to main content
Log in

The Quantum Measurement Problem and Cluster Separability

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A modified Beltrametti-Cassinelli-Lahti model of the measurement apparatus that satisfies both the probability reproducibility condition and the objectification requirement is constructed. Only measurements on microsystems are considered. The cluster separability forms a basis for the first working hypothesis: the current version of quantum mechanics leaves open what happens to systems when they change their separation status. New rules that close this gap can therefore be added without disturbing the logic of quantum mechanics. The second working hypothesis is that registration apparatuses for microsystems must contain detectors and that their readings are signals from detectors. This implies that the separation status of a microsystem changes during both preparation and registration. A new rule that specifies what happens when these changes occur and that guarantees the objectification is formulated and discussed. A part of our result has certain similarities with ‘collapse of the wave function’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ludwig, G.: Foundations of Quantum Mechanics I. Springer, New York (1983)

    MATH  Google Scholar 

  2. Ludwig, G.: Foundations of Quantum Mechanics II. Springer, New York (1985)

    MATH  Google Scholar 

  3. Ludwig, G.: An Axiomatic Basis for Quantum Mechanics 1. Springer, Berlin (1985)

    Book  Google Scholar 

  4. Ludwig, G.: An Axiomatic Basis for Quantum Mechanics 2. Springer, Berlin (1987)

    Book  Google Scholar 

  5. Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.-O., Zeh, H.D.: Decoherence and the Appearance of Classical World in Quantum Theory. Springer, Berlin (1996)

    MATH  Google Scholar 

  6. Zurek, W.H.: Rev. Mod. Phys. 75, 715 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Hepp, K.: Helv. Phys. Acta 45, 237 (1972)

    Google Scholar 

  8. Primas, H.: Chemistry, Quantum Mechanics and Reductionism. Springer, Berlin (1983)

    Book  Google Scholar 

  9. Bub, J.: Interpreting the Quantum World. Cambridge University Press, Cabridge (1999)

    Google Scholar 

  10. Bush, P., Lahti, P.J., Mittelstaed, P.: The Quantum Theory of Measurement. Springer, Heidelberg (1996)

    Google Scholar 

  11. d’Espagnat, B.: Veiled Reality. Addison-Wesley, Reading (1995)

    Google Scholar 

  12. Hájíček, P., Tolar, J.: Found. Phys. 39, 411 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Hájíček, P.: Found. Phys. 39, 1072 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Beltrametti, E.G., Cassinelli, G., Lahti, P.J.: J. Math. Phys. 31, 91 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer, Dordrecht (1995)

    MATH  Google Scholar 

  16. von Neumann, J.: Mathematical Foundation of Quantum Mechanics. Princeton University Press, Princeton (1983)

    Google Scholar 

  17. Bohm, D.: Quantum Theory. Prentice-Hall, Englewood Cliffs (1951)

    Google Scholar 

  18. Leo, W.R.: Techniques for Nuclear and Particle Physics Experiments. Springer, Berlin (1987)

    Book  Google Scholar 

  19. Twerenbold, D.: Rep. Progr. Phys. 59, 239 (1996)

    Article  Google Scholar 

  20. Weinberg, S.: The Quantum Theory of Fields, vol. I, p. 177. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  21. Haag, R.: Local Quantum Physics. Fields, Particles, Algebras. Springer, Berlin (1992)

    MATH  Google Scholar 

  22. Keiser, B.D., Polyzou, W.N.: In: Negele, J.W., Vogt, E. (eds.) Advances in Nuclear Physics, vol. 20. Plenum, New York (2002)

    Google Scholar 

  23. Coester, F.: Int. J. Mod. Phys. 17, 5328 (2003)

    ADS  Google Scholar 

  24. Mott, N.F.: Proc. R. Soc. Lond. A 126, 79 (1929)

    Article  ADS  MATH  Google Scholar 

  25. Davisson, C., Germer, L.: Phys. Rev. 30 (1927)

  26. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hájíček.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hájíček, P. The Quantum Measurement Problem and Cluster Separability. Found Phys 41, 640–666 (2011). https://doi.org/10.1007/s10701-010-9506-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-010-9506-3

Keywords

Navigation