Skip to main content
Log in

Interpreting Quantum Interference Using a Berry’s Phase-like Quantity

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We show that quantum interference can be interpreted in terms of a phase invariant quantity, not unlike the Berry’s phase. Under this interpretation, closed loops in time become fundamental quantum entities, and all quantum states become periodic. Decoherence is then seen to occur naturally as a consequence. This formalism, although counterintuitive, provides another useful way of assigning meaning to quantum probabilities and quasi-probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. III. Addison-Wesley, Menlo Park (1965)

    MATH  Google Scholar 

  2. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  MATH  ADS  Google Scholar 

  3. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)

    Google Scholar 

  4. Kirkpatrick, K.A.: “Quantal” behavior in classical probability. Found. Phys. Lett. 16, 199 (2003)

    Article  MathSciNet  Google Scholar 

  5. Mermin, N.D.: The Ithaca interpretation of quantum mechanics. Pramana 51(5), 549 (1998)

    Article  ADS  Google Scholar 

  6. Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45 (1984)

    MATH  ADS  MathSciNet  Google Scholar 

  7. Resta, R.: Manifestations of Berry’s phase in molecules and condensed matter. J. Phys.: Condens. Matter 12, R107 (2000)

    Article  ADS  Google Scholar 

  8. Loss, D., Schoeller, H., Goldbart, P.: Weak-localization effects and conductance fluctuations: implications of inhomogeneous magnetic fields. Phys. Rev. B 48, 15218 (1993)

    Article  ADS  Google Scholar 

  9. Lyanda-Geller, Y.: Topological transitions in Berry’s phase interference effects. Phys. Rev. Lett. 71, 657 (1993)

    Article  ADS  Google Scholar 

  10. Zhang, Y., Tan, Y.-W., Stormer, H.L., Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  11. King-Smith, R.D., Vanderbilt, D.: Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651 (1993)

    Article  ADS  Google Scholar 

  12. Niu, Q., Kleinman, L.: Spin-wave dynamics in real crystals. Phys. Rev. Lett. 80, 2205 (1998)

    Article  ADS  Google Scholar 

  13. Astumian, R.D.: Adiabatic operation of a molecular machine. Proc. Natl. Acad. Sci. 104, 19715 (2007)

    Article  ADS  Google Scholar 

  14. Anastopoulos, C., Savvidou, N.: Quantum mechanical histories and the Berry phase. Int. J. Theor. Phys. 41, 529 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Griffiths, R.B.: Consistent histories and the interpretation of quantum-mechanics. J. Stat. Phys. 36, 219 (1984)

    Article  MATH  ADS  Google Scholar 

  16. Rozanov, Y.A.: Probability Theory. Dover, New York (1969)

    MATH  Google Scholar 

  17. Bland, J.M., Altman, D.G.: Bayesians and frequentists. Br. Med. J. 317, 1151 (1998)

    Google Scholar 

  18. Weizsäcker, C.F. v.: The Structure of Physics. Springer, Dordrecht (2006)

    MATH  Google Scholar 

  19. Dirac, P.A.M.: The physical interpretation of quantum mechanics. Proc. R. Soc. Lond. 180, 1 (1942)

    Article  ADS  MathSciNet  Google Scholar 

  20. Knight, P.: Quantum mechanics: where the weirdness comes from. Nature 395, 12 (1998)

    Article  ADS  Google Scholar 

  21. Dennett, D.C.: Intuition pumps. In: Brockman, J. (ed.) The Third Culture: Beyond the Scientific Revolution. Simon & Schuster, New York (1995)

    Google Scholar 

  22. Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  23. Everett, H. III: In: DeWitt, B.S., Graham, N. (eds.) The Many-Worlds Interpretation of Quantum Mechanics. Princeton Univ. Press, Princeton (1986)

    Google Scholar 

  24. Tegmark, M.: The interpretation of quantum mechanics: many worlds or many words? Fortsch. Phys. 46, 855 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  25. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  26. Raju, C.K.: Time travel and the reality of spontaneity. Found. Phys. 36, 1099 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Gödel, K.: An example of a new type of cosmological solutions of Einstein’s field equations of gravitation. Rev. Mod. Phys. 21, 447 (1949)

    Article  MATH  ADS  Google Scholar 

  28. Gott, J.R. III: Closed timelike curves produced by pairs of moving cosmic strings: exact solutions. Phys. Rev. Lett. 66, 1126 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237 (1963)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Carroll, S.M., Chen, J.: Spontaneous inflation and the origin of the arrow of time. arXiv:hep-th/0410270v1 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Rave.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rave, M.J. Interpreting Quantum Interference Using a Berry’s Phase-like Quantity. Found Phys 38, 1073–1081 (2008). https://doi.org/10.1007/s10701-008-9252-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-008-9252-y

Keywords

Navigation