Skip to main content

Advertisement

Log in

On the Energy Concept Problem: Experiments and Interpretations

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

The principle of conservation of energy tells us that ‘energy can neither be created nor destroyed but only transformed’. The validity of the principle is without question. The problem is the concept. Contemporary physicists have asserted that we do not know what energy is. We find, however, 19th century physicists, contemporary physicists and historians of science who converge on the point: Mayer and Joule discovered energy. Therefore, we do not know what energy is, but we know these authors discovered it. What did they then discover? What can we learn from this with regard to the energy concept problem? To deal with this issue, I will distinguish between what the authors did experimentally and what they said about the phenomena. This method of analysis makes the difference in relation to historical works on the subject. In a second step, I will consider the introduction of the energy concept, which is from 1850s, and the reification of the energy in 1880s. Finally, I will address the energy conservation principle and the concept of energy conveyed by this principle in contemporary textbooks. As we shall see, the conservation of a magnitude that we call energy nowadays was discovered by Mayer and Joule; an indestructible and transformable entity was not. Adopting the original conservation principle would be enough to avoid the energy concept problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Indeed, the height is equal to 366 m and not 365 m. In 1845, Mayer took the height equal to 367 m.

  2. 'Theory' is understood in a broad sense, i.e., the theoretical construction performed by the author.

  3. Thomson met Joule in 1847. In the following year, he proposed an absolute thermometric scale based on Carnot’s theory (Thomson 1848). In the 1849 paper, he defended Carnot’s principle—the quantity of heat does not change—and argued: there is no experimental proof that heat could be converted into motion (Thomson 1849, pp. 544–545).

  4. Historians of Science usually refer to Young as having used the term 'energy' for the first time in science (Coopersmith 2015, p. 127). In fact, he proposed using the term 'energy' to replace 'vis viva'. The reason for this change was to avoid the use of the term ‘force’ for two distinct magnitudes: living force and quantity of motion (Young 1807, pp. 78–79).

  5. Thomson presents Davy as the founder of the dynamical theory of heat due to his experiment of melting two pieces of ice by rubbing them together (Thomson 1851a, p. 261). (This was not Davy’s point of view (Davy 1839, p. 3)). He also claims that Mayer’s and Joule’s friction experiments would be enough to prove Davy’s point of view. Mayer had, however, pointed out that he did not defend that heat is motion (Mayer 1842, p. 239, 1851, pp. 42–43).

  6. “in our present state of ignorance regarding perfect cold, and the nature of molecular forces, we cannot determine this “total mechanical energy” for any portion of matter” (Thomson 1851b, p. 475).

  7. “Let r be the radius of the wire, i the current along it, α the magnetic intensity at the surface, P the electromotive intensity at any point within the wire, and V the difference of potential between the two ends. Then the area of a length l of the wire is 2 \(\pi\) rl, and the energy entering from the outside per second is \(\frac{areaxE.M.I.xM.I.}{4\pi } = \frac{2\pi rl.P.\alpha }{4\pi } = \frac{2\pi r\alpha .Pl}{4\pi } = \frac{4\pi iV}{4\pi } = iV\) for the line integral of the magnetic intensity 2 \(\pi\) rα round the wire is 4 \(\pi\) x current through it, and Pl=V.

    But by ohm's law V=iR and iV=i²R, or the heat developed according to joule's law” (Poynting 1884, pp. 350–351).

  8. “In this case very near the wire, and within it, the lines of magnetic force are circles round the axis of the wire. The lines of electric force are along the wire […] energy is therefore flowing in perpendicularly through the surface, that is, along the radius towards the axis” (Ib., p. 350).

  9. A vector product has as a result a third vector that is perpendicular to the other two. It is this third vector that provides those lines.

  10. “whenever energy is transferred from one place to another at a distance, it is not to be regarded as destroyed at one place and recreated at another, but it is to be regarded as transferred, just as so much matter would have to be transferred” (Lodge 1885, p. 482).

  11. “The energy may be watched at every instant. Its existence is continuous; it possesses identity” (Ib., p. 483).

  12. Chalmers (1963, p. 43), Bueche (1972, p. 95), Hudson and Nelson (1982, p. 95), Hänsel and Neumann (1993, p. 222), Cutnell and Johnson (1997, p. 177), Dransfeld et al. (2001, p. 109) and Young and Freedman (2004, p. 264).

  13. Scherr et al. (2012) propose to use the metaphor of substance to teach energy. The exception would be in the teaching of quantum mechanics: “In quantum mechanics, energy is not associated with a region of space, and one of the key features of the substance conceptualization of energy is lost. Quantum mechanics presents such a drastic reconceptualization of object permanence that there is no surprise that energy would need to be reconceptualized as well” (Scherr et al. 2012, p. 020144).

  14. Mayer’s ‘force of fall‘ is now called ‘potential energy’; Mayer’s force ‘motion‘ is ‘kinetic energy’; heat, a form of force, became a form of energy.

References

  • Ampère, A. M. (1822). Expériences relatives à de nouveaux phénomènes électro-dynamiques. Annales de Chimie et de Physique, 20, 60–74.

    Google Scholar 

  • Anderson, G. M. (2017). Thermodynamics of naural systems: Theory and applications in geochemistry and environmental science (3rd ed.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Arons, A. B. (1999). Development of energy concepts in introductory physics courses. American Journal of Physics, 67, 1063–1067.

    Article  Google Scholar 

  • Bergmann, L., & Schaefer, C. (1998). Lehrbuch der Experimentalphysik, vol. I (11th ed.). Berlin, New York: de Gruyter.

    Google Scholar 

  • Berthollet, C. L. (1809). Notes sur divers objects. Mémoires de Physique et de Chimie de la Société d’Arcueil. Tome II, 441–448. Paris (Rep. New York: Johnson).

  • Berzelius, J. (1829). Jahres-Bericht über die Fortschritte der physischen Wissenschaften. Vol. VIII (1828), 72–80.

  • Breger, H. (1982). Die Natur als arbeitende Maschine: Zur Entstehung des Energiebegriffs in der Physik 1840–1850. Frankfurt am Main, NY: Campus Verlag.

    Google Scholar 

  • Bueche, F. (1972). Principles of physics (2nd ed.). New York: Mc Graw Hill.

    Google Scholar 

  • Cahan, D. (2012). The awarding of the copley medal and the ‘Discovery’ of the law of conservation of energy: Joule, Mayer and Helmholtz revisited. Notes and Records of the Royal Society, 66, 125–139.

    Article  Google Scholar 

  • Caneva, K. L. (1993). Robert Mayer and the conservation of energy. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Cardwell, D. S. L. (1989). James Joule: A biography. Manchester: Manchester University Press.

    Google Scholar 

  • Carnot, S. (1824). Réflexions sur la puissance motrice du feu. Paris : Bachelier. (Rep. Éditions J. Gabay, 1990).

  • Çengel, Y., & Boles, M. (2002) Thermodynamics. Mc Graw Hill, Boston [etc.].

  • Chalmers, B. (1963). Energy. New York, London: Academic Press.

    Google Scholar 

  • Clapeyron, B. (1834). Mémoire sur la puissance motrice de la chaleur. Journal de l’École Polytechnique XIV, 153–190.

  • Clausius, R. (1850). Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen. Annalen der Physik, 79(368–397), 500–524.

    Article  Google Scholar 

  • Colding, L. (1856). Nogle Sætninger om Kræfterne. Supplement to Oversigt over det Kgl. Danske Videnskabernes Selskabs Forhandlinger 8, 1-20. (Translation: Colding, L. (1972). Theses Concerning Force. In P. Dahl (Ed.) Ludvig Colding and the Conservation of Energy Principle. New York, London: Johnson Reprint Corporation.).

  • Colladon & Sturm. (1828). Ueber die Zusammendrückbarkeit der Flüssigkeiten. Annalen der Physik, 88, 161–197.

    Article  Google Scholar 

  • Coopersmith, J. (2015). Energy, the subtle concept: The discovery of Feynman’s blocks from Leibniz to Einstein (Rev ed.). Oxford: Oxford University Press.

    Book  Google Scholar 

  • Cutnell, J., & Johnson, K. (1997). Physics. New York: Wiley.

    Google Scholar 

  • Davy, H. (1839 [1799]). Collected works. J. Davy (ed.). London.

  • Delon, M. (1988). L’idée d’énergie au tournant des Lumières (1770–1820). Paris: Pr. Univ. de France.

    Google Scholar 

  • Dransfeld, K., Kienle, P., & Kalvius, G. M. (2001). Physik I: Mechanik und Wärme (9th ed.). München: Oldenbourg.

    Google Scholar 

  • Duit, R. (1987). Should energy be illustrated as something quasi-material? International Journal of Science Education, 9, 139–145.

    Article  Google Scholar 

  • Einstein, A. (1989 [1909]). Über die Entwicklung unserer Anschauungen über das Wesen und die Konstitution der Strahlung. In A. Einstein. The collected papers of Albert Einstein. The Swiss years: writings 19001909 (Vol. 2). John Stachel (Ed.). Princeton: Princeton University Press, pp. 564–583.

  • Faraday, M. (1832). Experimental researches in electricity. Philosophical Transactions of the Royal Society of London, 122, 125–162.

    Article  Google Scholar 

  • Faraday, M. (1839). Experimental researches in electricity I. London. (Reimp. Bruxelas, 1969).

  • Feynman, R. (1966). The Feynman lectures on physics. 2nd ed. London.

  • Fox, R. (1971). The caloric theory of gases. From Lavoisier to Regnault. Oxford: Clarendon Press.

    Google Scholar 

  • Gay-Lussac. (1807). Premier essai pour déterminer les variations de température qu’éprouvent les gaz en changeant de densité, et considérations sur leur capacité pour le calorique. Mémoires de Physique et de Chimie de la Société d’Arcueil, Tome I, 180–203. Paris. (Reimpr. Maurice Crosland. New York, London: Johnson Reprint Corporation, 1967).

  • Haldat. (1807). Recherches sur la chaleur produite par le frottement. Journal de Physique, de Chimie et d’Histoire Naturelle, 65, 213–222.

    Google Scholar 

  • Hänsel, H. & Neumann, W. (1993). Physik: Mechanik und Wärme. Heidelberg [etc.]: Spektrum, Akad. Verl.

  • Harrer, B. W. (2017). On the origin of energy: Metaphors and manifestations as resources for conceptualizing and measuring the invisible, imponderable. American Journal of Physics, 85, 454–460.

    Article  Google Scholar 

  • Helm, G. (1898). Die Energetik nach der geschichtlichen Entwicklung. Leipzig: Veit & C.

    Google Scholar 

  • Helmholtz, H. (1882). Wissenschaftliche Abhandlungen I. Leipzig: Barth.

    Google Scholar 

  • Hertz, H. (1894). Die Prinzipien der Mechanik. Leipzig: J. A. Barth.

    Google Scholar 

  • Hudson, A., & Nelson, R. (1982). University Physics. New York: H. B. Jovanovich.

    Google Scholar 

  • Joule, J. P. (1850). On the mechanical equivalent of heat. Philosophical Transactions of the Royal Society of London, 140, 61–82.

    Article  Google Scholar 

  • Joule, J. P. (1884). The scientific papers of James Prescott Joule. Vol. 1. London: The Physical Society. (London: Rep. Dawsons, 1963.).

  • Kipnis, N. (2014). Thermodynamics and mechanical equivalent of heat. Science & Education, 2014(23), 2007–2044.

    Article  Google Scholar 

  • Lancor, R. (2014). Using metaphor theory to examine conceptions of energy in biology, chemistry, and physics. Science & Education, 23, 1245–1267.

    Article  Google Scholar 

  • Lodge, O. (1879). An attempt at a systematic classification of the various forms of energy. Philosophical Magazine, 8, 277–286.

    Google Scholar 

  • Lodge, O. (1885). On the identity of energy: in connection with Mr Poynting’s paper on the transfer of energy in an electromagnetic field; and the two fundamental forms of energy. Philosophical Magazine, 19, 482–494.

    Google Scholar 

  • Maxwell, J. (1873). Theory of heat (3rd ed.). Connecticut: Greenwood.

    Google Scholar 

  • Mayer, J. R. (1842). Bemerkungen über die Kräfte der unbelebten Natur. Annalen der Chemie und Pharmacie 42, 233–240. (In Mayer, 1978).

  • Mayer, J. R. (1845). Die organische Bewegung in ihrem Zusammenhange mit dem Stoffwechsel. Heilbronn. (In Mayer, 1978).

  • Mayer, J. R. (1851). Bemerkungen über das mechanische Aequivalent der Wärme. Heilbronn. (In Mayer, 1978).

  • Mayer, J. R. (1978). Die Mechanik der Wärme: Sämtliche Schriften. H. P. Münzenmayer and Stadtarchiv Heilbronn (Eds.). Heilbronn: Stadtarchiv Heilbronn.

  • Müller & Pouillet (1926). Lehrbuch der Physik. Vol. 3-I. 11th ed. Braunschweig.

  • Muncke, G. W. (1829). Handbuch der Naturlehre I. Heidelberg: Universitäts-Buchhandlung C. Winter.

    Google Scholar 

  • Ostwald, W. (1896). Zur Energetik. Annalen der Physik, 58, 154–165.

    Article  Google Scholar 

  • Ostwald, W. (1912 [1908]). Die Energie (2nd ed.). Leipzig: J. A. Barth.

  • Planck, M. (1921 [1887]). Das Prinzip der Erhaltung der Energie (4th ed.). Leipzig, Berlin: Teubner.

  • Poynting, J. H. (1884). On the transfer of energy in the electromagnetic field. Philosophical Transactions of the Royal Society, 175, 343–361.

    Article  Google Scholar 

  • Preston, T. (1919). The theory of heat (3rd ed.). R. Cotter (Ed.). London: Macmillan.

  • Rankine, W. (1850). Abstract of a paper on the hypothesis of molecular vortices, and its application to the mechanical theory of heat. In Proceedings of the Royal Society of Edinburgh II, 275–288.

  • Rankine, W. (1853). On the general law of the transformation of energy. Philosophical Magazine, 34, 106–117.

    Google Scholar 

  • Rankine, W. (1855). Outlines of the science of energetics. Edinburgh New Philosophical Journal, 2, 120–141.

    Google Scholar 

  • Rumford, B. C. (1798). An inquiry concerning the source of the heat which is excited by friction. Philosophical Transactions of the Royal Society of London, 88, 80–102.

    Article  Google Scholar 

  • Scherr, R. E., Close, H. G., McKagan, S. B., & Vokos, S. (2012). Representing energy. I.Representing a substance ontology for energy. Physical Review Special Topics-Physics Education Research, 8, 020114.

    Article  Google Scholar 

  • Seebeck, T. (1822–1823). Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin, pp. 265–373.

  • Smith, C. (1976). Faraday as referee of Joule’s Royal Society paper ‘On the mechanical equivalent of heat’. Isis, 76, 444–449.

    Article  Google Scholar 

  • Smith, C. (1998). The science of energy: A cultural history of energy physics in Victorian Britain. London: The Athlone Press.

    Google Scholar 

  • Suckow, G. A. (1813). Anfangsgründe der Physik und Chemie nach den neuesten Entdeckungen. Augsburg.

  • Thomson, W. (1848). On an absolute thermometric scale founded on Carnot’s Theory of the motive power of heat. Philosophical Magazine, 33, 313–317.

    Google Scholar 

  • Thomson, W. (1849). An account of Carnot’s theory of the motive power of heat; with numerical results deduced from Regnault’s experiments of steam. Transactions of the Royal Society of Edinburgh, 16, 541–574.

    Article  Google Scholar 

  • Thomson, W. (1851a). On the dynamical theory of heat; with numerical results deduced from Mr Joule’s equivalent of a thermal unit, and M. Regnault’s observations on steam. Transactions of the Royal Society of Edinburgh (1853) 20, 261–298.

  • Thomson, W. (1851b). On the dynamical theory of heat. On the quantities of mechanical energy contained in different states, as to temperature and density. Transactions of the Royal Society of Edinburgh (1853) 20, 475–82.

  • Thomson, W. (1852). On a universal tendency in Nature to the dissipation of Mechanical Energy. Proceedings of the Royal Society of Edinburgh, 3, 139–142.

    Article  Google Scholar 

  • Thomson, W. (1884). Mathematical and physical papers II. Cambridge: Cambridge University Press.

    Google Scholar 

  • Thomson, W., & Tait, P. (1862). Energy. Good Words, 3, 601–607.

    Google Scholar 

  • Verdet, E. (1868–1872). Oeuvres d’É. Verdet, Vol. 7. Prudhon & Violle (eds.). Paris: Masson.

  • Young, T. (1807). A course of lectures on natural philosophy and the mathematical arts. 2 Vol. P. Kelland (ed.). London: Taylor and Walton.

  • Young, H., & Freedman, R. (2004). Sears and Zemansky’s University Physics (11th ed.). San Francisco: P. Addison-Wesley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Lopes Coelho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes Coelho, R. On the Energy Concept Problem: Experiments and Interpretations. Found Sci 26, 607–624 (2021). https://doi.org/10.1007/s10699-020-09675-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-020-09675-z

Keywords

Navigation