Skip to main content
Log in

RNA-seq and microRNA-seq analysis of Japanese flounder (Paralichthys olivaceus) larvae treated by thyroid hormones

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Flatfish pigmentation is a complex process, affected by environmental factors including light, nutrients, and hormones. Of those, the thyroid hormone has been reported to increase the albinism rate of Japanese flounder (Paralichthys olivaceus). However, the underlying mechanism remains unclear. In the present study, triiodothyronine (T3), thyroxine, and thiourea were introduced into P. olivaceus larvae from 16 to 57 days after hatching (DAH). By comparison of albinism rate, T3 treatment and control larvae of 42 DAH were chosen for mRNA and miRNA high-throughput sequencing analyses. A total of 337 miRNAs were identified via miRNA-seq, and 12 miRNAs exhibited significantly differential expression patterns in D42_T3 versus D42_Con (TPM > 10, fold change ≥ 1.5 or ≤ 0.67 and q ≤ 0.05). These differentially expressed miRNAs targeted 3658 putative genes, which further enriched to 10 GO terms (q < 0.05). RNA-seq identified 146 differentially expressed genes (DEGs) in D42_T3 versus D42_Con (|log2 fold change| > 1 and q < 0.005), including pigmentation-related genes such as the receptor tyrosine-protein kinase erbB-3, pro-opiomelanocortin A, and melanotransferrin, and the growth-related gene somatotropin. These DEGs were significantly enriched to 15 GO terms and 8 KEGG pathways (q < 0.05), which included several sugar metabolic pathways (glycolysis/gluconeogenesis and the pentose phosphate pathway). Integrated analysis revealed that 26 overlapping genes between DEGs and mRNAs were targeted by miRNAs. Furthermore, seven mRNA-miRNA pairs exhibited reversed regulation patterns. This provides important clues to understand the role of thyroid hormones in flatfish pigmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akram M (2013) Mini-review on glycolysis and cancer. J Canc Educ 28:454–457

    Article  CAS  Google Scholar 

  • Baker EP, Alves D, Bengtson DA (1998) Effects of rotifer and Artemia fatty-acid enrichment on survival, growth and pigmentation of summer flounder Paralichthys dentatus larvae. J World Aquacult Soc 29:494–498

    Article  Google Scholar 

  • Brown DD, Cai L, Das B, Marsh-Armstrong N, Schreiber AM, Juste R (2005) Thyroid hormone controls multiple independent programs required for limb development in Xenopus laevis metamorphosis. Proc Natl Acad Sci U S A 102(35):12455–12458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buac K, Xu M, Cronin J, Weeraratna AT, Hewitt SM, Pavan WJ (2009) NRG1 / ERBB3 signaling in melanocyte development and melanoma: inhibition of differentiation and promotion of proliferation. Pigment Cell Melanoma Res 22(6):773–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton D, Vokey J, Mayo D (1995) Adrenoceptors in cryptic patterning of a flatfish, Pleuronectes americanus. P Roy Soc B-Biol Sci 261(1361):181–186

    Article  CAS  Google Scholar 

  • Campinho MA, Silva N, Roman-Padilla J, Ponce M, Manchado M, Power DM (2015) Flatfish metamorphosis: a hypothalamic independent process? Mol Cell Endocrinol 404:16–25

    Article  CAS  PubMed  Google Scholar 

  • Comi GP, Fortunato F, Lucchiari S, Bordoni A, Prelle A, Jann S, Keller A, Ciscato P, Galbiati S, Chiveri L, Torrente Y, Scarlato G, Bresolin N (2001) Beta-enolase deficiency, a new metabolic myopathy of distal glycolysis. Ann Neurol 50(2):202–207

    Article  CAS  PubMed  Google Scholar 

  • de Jesus EG, Inui Y, Hirano T (1990) Cortisol enhances the stimulating action of thyroid hormones on dorsal fin-ray resorption of flounder larvae in vitro. Gen Comp Endocrinol 79(2):167–173

    Article  PubMed  Google Scholar 

  • Denson MR, Smith TIJ (1997) Diet and light intensity effects on survival, growth and pigmentation of southern flounder Paralichthys lethostigma. J World Aquacult Soc 28:366–373

    Article  Google Scholar 

  • D'Mello SA, Finlay GJ, Baguley BC, Askarian-Amiri ME (2016) Signaling pathways in melanogenesis. Int J Mol Sci 17(7):pii: E1144

    Article  CAS  Google Scholar 

  • Forsthoefel NR, Vernon DM, Cushman JC (1995) A salinity-induced gene from the halophyte M. crystallinum encodes a glycolytic enzyme, cofactor-independent phosphoglyceromutase. Plant Mol Biol 29(2):213–226

    Article  CAS  PubMed  Google Scholar 

  • Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N (2011) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40:37–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadley ME (1992) Endocrinology, 3rd edn. Prentice-Hall International, London

    Google Scholar 

  • Higgs DA, Fagerlund UHM, McBride JR, Eales JG (1979) Influence of orally administered L-thyroxine or 3,5,3′-triiodothyronine on growth, food consumption and food conversion of underyearling coho salmon (Oncorhynchus kisutch). Can J Zool 57:1974–1979

    Article  CAS  Google Scholar 

  • Hirai H, Verma M, Watanabe S, Tastad C, Asakura Y, Asakura A (2010) MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3. J Cell Biol 191(2):347–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu D, Luo W, Fan LF, Liu FL, Gu J, Deng HM, Zhang C, Huang LH, Feng QL (2016) Dynamics and regulation of glycolysis-tricarboxylic acid metabolism in the midgut of Spodoptera litura during metamorphosis. Insect Mol Biol 25(2):153–162

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Schreiber AM, Soffientino B, Bengtson DA, Specker JL (1998) Metamorphosis of summer flounder Paralichthys dentatus: thyroid status and the timing of gastric gland formation. J Exp Zool 280:413–420

    Article  CAS  Google Scholar 

  • Inui Y, Yamano K, Miwa S (1995) The role of thyroid hormone in tissue development in metamorphosing flounder. Aquaculture 135(1–3):87–98

    Article  CAS  Google Scholar 

  • Ishizuya-Oka A, Shimozawa A (1992) Programmed cell death and heterolysis of larval epithelial cells by macrophage-like cells in the anuran small intestine in vivo and in vitro. J Morphol 213:185–195

    Article  CAS  PubMed  Google Scholar 

  • Jeffery CJ, Bahnson BJ, Chien W, Ringe D, Petsko GA (2000) Crystal structure of rabbit phosphoglucose isomerase, a glycolytic enzyme that moonlights as neuroleukin, autocrine motility factor, and differentiation mediator. Biochemistry 39(5):955–964

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa A (1993) Nutritional mechanisms involved in the occurrence of abnormal pigmentation in hatchery-reared flatfish. J World Aquaculture Soc 24:162–166

    Article  Google Scholar 

  • Klaren PHM, Wunderink YS, Yúfera M, Mancera JM, Flik G (2008) The thyroid gland and thyroid hormones in Senegalese sole (Solea senegalensis) during early development and metamorphosis. Gen Comp Endocrinol 155(3):686–694

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Martin BL, Harland RM (2001) Hypaxial muscle migration during primary myogenesis in Xenopus laevis. Dev Biol 239(2):270–280

    Article  CAS  PubMed  Google Scholar 

  • Miwa S, Inui Y (1987) Effects of various doses of thyroxine and triiodothyronine on the metamorphosis of the flounder (Paralichthys olivaceus). Gen Comp Endocrinol 67:356–363

    Article  CAS  PubMed  Google Scholar 

  • Miwa S, Yamano K, Inui Y (1992) Thyroid hormone stimulates gastric development in flounder larvae during metamorphosis. J Exp Zool 261:424–430

    Article  CAS  Google Scholar 

  • Moran C, Agostini M, Visser E (2014) Resistance to thyroid hormone caused by a mutation in thyroid hormone receptor (TR) alpha1 and alpha2: clinical, biochemical and genetic analyses of three related patients. Lancet Diabetes Endocrinol 2:619–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada N, Takagi Y, Tanaka M, Tagawa M (2003) Fine structure of soft and hard tissues involved in eye migration in metamorphosing Japanese flounder (Paralichthys olivaceus). Anat Rec A Discov Mol Cell Evol Biol 273A(1):663–668

    Article  Google Scholar 

  • Park HY, Kosmadaki M, Yaar M, Gilchrest BA (2009) Cellular mechanisms regulating human melanogenesis. Cell Mol Life Sci 66(9):1493–1506

    Article  CAS  PubMed  Google Scholar 

  • Pausch H, Wang X, Jung S, Krogmeier D, Edel C, Emmerling R, Götz KU, Fries R (2012) Identification of QTL for UV-protective eye area pigmentation in cattle by progeny phenotyping and genome-wide association analysis. PLoS One 7(5):e36346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Power DM, Llewellyn L, Faustino M, Nowell MA, Björnsson BT, Einarsdottir IE, Canario AV, Sweeney GE (2001) Thyroid hormones in growth and development of fish. Comp Biochem Physiol C Toxicol Pharmacol 130(4):447–459

    Article  CAS  PubMed  Google Scholar 

  • Power DM, Einarsdóttir IE, Pittman K, Sweeney GE, Hildahl J, Campinho MA, Silva N, Sæle Ø, Galay-Burgos M, Smáradóttir H, Björnsson BT (2008) The molecular and endocrine basis of flatfish metamorphosis. Rev Fish Sci 16(Suppl 1):95–111

    Article  CAS  Google Scholar 

  • Reddy PK, Lam TJ (1992) Role of thyroid hormones in tilapia larvae (Oreochromis mossambicus) 1: effects of the hormones and an antithyroid drug on yolk absorption, growth and development. Fish Physiol Biochem 9:473–485

    Article  CAS  PubMed  Google Scholar 

  • Sacchetti P, Carpentier R, Ségard P, Olivé-Cren C, Lefebvre P (2006) Multiple signaling pathways regulate the transcriptional activity of the orphan nuclear receptor NURR1. Nucleic Acids Res 34(19):5515–5527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber AM (2006) Asymmetric craniofacial remodeling and lateralized behavior in larval flatfish. J Exp Biol 209:610–621

    Article  PubMed  Google Scholar 

  • Schreiber AM, Specker JL (1998) Metamorphosis in the summer flounder (Paralichthys dentatus): stage-specific developmental response to altered thyroid status. Gen Comp Endocrinol 111(2):156–166

    Article  CAS  PubMed  Google Scholar 

  • Shao C, Bao B, Xie Z, Chen X, Li B, Jia X, Yao Q, Ortí G, Li W, Li X, Hamre K, Xu J, Wang L, Chen F, Tian Y, Schreiber AM, Wang N, Wei F, Zhang J, Dong Z, Gao L, Gai J, Sakamoto T, Mo S, Chen W, Shi Q, Li H, Xiu Y, Li Y, Xu W, Shi Z, Zhang G, Power DM, Wang Q, Schartl M, Chen S (2017) The genome and transcriptome of Japanese flounder provide insights into flatfish asymmetry. Nat Genet 49(1):119–124

    Article  CAS  PubMed  Google Scholar 

  • Shi YB, Wong J, Puzianowska-Kuznicka M, Stolow MA (1986) Tadpole competence and tissue-specific temporal regulation of amphibian metamorphosis: roles of thyroid hormone and its receptors. BioEssays 18:391–399

    Article  Google Scholar 

  • Suryo Rahmanto Y, Dunn LL, Richardson DR (2007) The melanoma tumor antigen, melanotransferrin (p97): a 25-year hallmark--from iron metabolism to tumorigenesis. Oncogene 26(42):6113–6124

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Machiyama F, Nishino S, Watanabe Y, Kashiwagi K, Kashiwagi A, Yoshizato K (2009) Molecular features of thyroid hormone-regulated skin remodeling in Xenopus laevis during metamorphosis. Develop Growth Differ 51(4):411–427

    Article  CAS  Google Scholar 

  • Tagawa M, Aritaki M (2005) Production of symmetrical flatfish by controlling the timing of thyroid hormone treatment in spotted halibut Verasper variegatus. Gen Comp Endocrinol 141(2):184–189

    Article  CAS  PubMed  Google Scholar 

  • Videira IF, Moura DF, Magina S (2013) Mechanisms regulating melanogenesis. An Bras Dermatol 88(1):76–83

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang N, Wang R, Wang R, Tian Y, Shao C, Jia X, Chen S (2017) The integrated analysis of RNA-seq and microRNA-seq depicts miRNA-mRNA networks involved in Japanese flounder (Paralichthys olivaceus) albinism. PLoS One 12(8):e0181761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanuki Y, Takayasu S, Kageyama K, Iwasaki Y, Sakihara S, Terui K, Nigawara T, Suda T (2013) Involvement of Nurr-1/Nur77 in corticotropin-releasing factor/urocortin1-induced tyrosinase-related protein 1 gene transcription in human melanoma HMV-II cells. Mol Cell Endocrinol 370(1–2):42–51

    Article  CAS  PubMed  Google Scholar 

  • Watanuki Y, Kageyama K, Takayasu S, Matsuzaki Y, Iwasaki Y, Daimon M (2014) Ultraviolet B radiation-stimulated urocortin 1 is involved in tyrosinase-related protein 1 production in human melanoma HMV-II cells. Peptides 61:93–97

    Article  CAS  PubMed  Google Scholar 

  • Wen M, Shen Y, Shi S, Tang T (2010) miREvo: an integrative microRNA evolutionary analysis platform for next-generation sequencing experiments. BMC Bioinformatics 13:140

    Article  CAS  Google Scholar 

  • Yamano K, Miwa S (1998) Differential gene expression of thyroid hormone receptor α and β in fish development. Gen Comp Endocrinol 109:75–85

    Article  CAS  PubMed  Google Scholar 

  • Yamano K, Takano-Ohmuro H, Obinata T, Inui Y (1994) Effect of thyroid hormone on developmental transition of myosin light chains during flounder metamorphosis. Gen Comp Endocrinol 93:321–326

    Article  CAS  PubMed  Google Scholar 

  • Yoo JH, Takeuchi T, Tagawa M, Seikai T (2000) Effect of thyroid hormones on the stage-specific pigmentation of the Japanese flounder Paralichthys olivaceus. Zool Sci 17(8):1101–1106

    Article  CAS  Google Scholar 

  • Zala D, Hinckelmann MV, Yu H, Lyra da Cunha MM, Liot G, Cordelières FP, Marco S, Saudou F (2013) Vesicular glycolysis provides on-board energy for fast axonal transport. Cell 152(3):479–491

    Article  CAS  PubMed  Google Scholar 

  • Zhang WT, Liu K, Xiang JS, Zhang LY, Liu WJ, Dong ZD, Li YZ, Li HL, Chen SL, Wang N (2016) Molecular cloning, expression of, and regulation by thyroid-hormone receptor α A in the half-smooth tongue sole Cynoglossus semilaevis during metamorphosis. J Fish Biol 88(5):1693–1707

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Assmann SM (2011) The glycolytic enzyme, phosphoglycerate mutase, has critical roles in stomatal movement, vegetative growth, and pollen production in Arabidopsis thaliana. J Exp Bot 62(14):5179–5189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Chen J, Li Z, Li X, Hu X, Huang Y, Zhao X, Liang C, Wang Y, Sun L, Shi M, Xu X, Shen F, Chen M, Han Z, Peng Z, Zhai Q, Chen J, Zhang Z, Yang R, Ye J, Guan Z, Yang H, Gui Y, Wang J, Cai Z, Zhang X (2010) Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27.3 associate with clear cell renal cell carcinoma. PLoS One 5:e15524

    Article  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (31472273, 31461163005), AoShan Talents Cultivation Program Supported by Qingdao National Laboratory for Marine Science and Technology (No.2017ASTCP-OS15), and the Taishan Scholar Climb Project of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Na Wang or Songlin Chen.

Ethics declarations

Collection and handling of the animals used in this study were approved by Institutional Animal Care and Use Committee (IACUC) of Yellow Sea Fisheries Research Institute, CAFS.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 11657 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Wang, R., Wang, R. et al. RNA-seq and microRNA-seq analysis of Japanese flounder (Paralichthys olivaceus) larvae treated by thyroid hormones. Fish Physiol Biochem 45, 1233–1244 (2019). https://doi.org/10.1007/s10695-019-00654-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-019-00654-1

Keywords

Navigation