Skip to main content
Log in

Risk concentration under second order regular variation

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

Measures of risk concentration and their asymptotic behavior for portfolios with heavy-tailed risk factors is of interest in risk management. Second order regular variation is a structural assumption often imposed on such risk factors to study their convergence rates. In this paper, we provide the asymptotic rate of convergence of the measure of risk concentration for a portfolio of heavy-tailed risk factors, when the portfolio admits the so-called second order regular variation property. Moreover, we explore the relationship between multivariate second order regular variation for a vector (e.g., risk factors) and the second order regular variation property for the sum of its components (e.g., the portfolio of risk factors). Results are illustrated with a variety of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alink, S., Löwe, M., Wüthrich, M. V.: Diversification of aggregate dependent risks. Insurance Math. Econom. 35(1), 77–95 (2004)

    Article  MathSciNet  Google Scholar 

  • Barbe, P., Fougères, A. L., Genest, C.: On the tail behavior of sums of dependent risks. Astin Bull. 36(2), 361–373 (2006)

    Article  MathSciNet  Google Scholar 

  • Bingham, N. H., Goldie, C. M., Teugels, J. L.: Regular variation encyclopedia of mathematics and its applications, vol. 27. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  • Bürgi, R., Dacorogna, M., Iles, R.: Risk aggregation, dependence structure and diversification benefit. In: Stress testing for financial institutions, pp 265–306. Risk Books, Incisive Media, London (2008)

  • Dacorogna, M., Elbahtouri, L., Kratz, M.: Model validation for aggregated risks. Ann. Actuarial Sci. 12(2), 433–454 (2018). 10.2139/ssrn.2716093

    Article  Google Scholar 

  • Degen, M., Embrechts, P.: Scaling of high-quantile estimators. J. Appl. Probab. 48(4), 968–983 (2011)

    Article  MathSciNet  Google Scholar 

  • Degen, M., Lambrigger, D., Segers, J.: Risk concentration and diversification: Second-order properties. Insurance: Math. Econ. 46(3), 541–546 (2010)

    MathSciNet  MATH  Google Scholar 

  • Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling extreme events for insurance and finance. Springer-Verlag, Berlin (1997)

    Book  Google Scholar 

  • Embrechts, P., Lambrigger, D., Wüthrich, M.: Multivariate extremes and the aggregation of dependent risks: Examples and counter-examples. Extremes 12(2), 107–127 (2009)

    Article  MathSciNet  Google Scholar 

  • Embrechts, P., McNeil, A., Straumann, D.: Correlation and dependence in risk management: Properties and pitfalls. In: Dempster, M. A. H. (ed.) Risk management: Value at risk and beyond, pp 176–223. Cambridge University Press, Cambridge (2002)

  • Geluk, J., de Haan, L.: Regular Variation, Extensions and Tauberian Theorems CWI Tract, vol. 40. Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam (1987)

    Google Scholar 

  • de Haan, L.: On regular variation and its applications to the weak convergence of sample extremes. Mathematical Centre Tracts Vol. 32 (1970)

  • de Haan, L., Ferreira, A.: Extreme value theory: An introduction. Springer-Verlag, New York (2006)

    Book  Google Scholar 

  • de Haan, L., Resnick, S.: Estimating the limit distribution of multivariate extremes. Commun. Stat. Stoch. Model. 9(2), 275–309 (1993)

    Article  MathSciNet  Google Scholar 

  • de Haan, L., Stadtmueller, U.: Generalized regular variation of second order. J. Aust. Math. Soc. Series A 61(3), 381–395 (1996)

    Article  MathSciNet  Google Scholar 

  • Hua, L., Joe, H.: Second order regular variation and conditional tail expectation of multiple risks. Insurance: Math. Econ. 49(3), 537–546 (2011)

    MathSciNet  MATH  Google Scholar 

  • Ibragimov, R., Jaffee, D., Walden, J.: Diversification disasters. J. Financ. Econ. 99(2), 333–348 (2011)

    Article  Google Scholar 

  • Kortschak, D.: Second order tail asymptotics for the sum of dependent, tail-independent regularly varying risks. Extremes 15(3), 353–388 (2012)

    Article  MathSciNet  Google Scholar 

  • Kratz, M.: Normex, A new method for evaluating the distribution of aggregated heavy tailed risks. application to risk measures. Extremes. Special issue on Extremes and Finance 17(4), 661–691 (2014)

    MathSciNet  MATH  Google Scholar 

  • Mao, T., Hu, T.: Second-order properties of risk concentrations without the condition of asymptotic smoothness. Extremes 16(4), 383–405 (2013)

    Article  MathSciNet  Google Scholar 

  • Neveu, J.: Mathematical foundations of the calculus of probability. Translated by Amiel Feinstein. Holden-Day, Inc. San Francisco, Calif.-London-Amsterdam (1965)

    Google Scholar 

  • Omey, E., Willekens, E.: Second order behaviour of the tail of a subordinated probability distribution. Stoch. Process. Appl. 21(2), 339–353 (1986)

    Article  MathSciNet  Google Scholar 

  • Peng, L., Wang, R., Yang, J.: Bounds for the sum of dependent risks and worst value-at-risk with monotone marginal densities. Finance Stochast. 17(2), 395–417 (2013)

    Article  MathSciNet  Google Scholar 

  • Puccetti, G., Rüschendorf, L.: Sharp bounds for sums of dependent risks. J. Appl. Probab. 50, 42–53 (2013)

    Article  MathSciNet  Google Scholar 

  • Resnick, S.: Hidden regular variation, second order regular variation and asymptotic independence. Extremes 5(4), 303–336 (2002)

    Article  MathSciNet  Google Scholar 

  • Resnick, S.: Heavy tail phenomena: Probabilistic and statistical modeling. Springer series in operations research and financial engineering. Springer-Verlag, New York (2007)

    Google Scholar 

  • Resnick, S.: Extreme values, regular variation and point processes. Springer Series in Operations Research and Financial Engineering. Springer, New York (2008). Reprint of the 1987 original (2008)

  • Sun, Y., Li, H.: Tail approximation of value-at-risk under multivariate regular variation. Int. J. Oper. Res. (Taichung) 7(4), 34–44 (2010)

    MathSciNet  Google Scholar 

  • Tasche, D.: Capital allocation to business units and sub-portfolios: The Euler principle. In: Resti, A. (ed.) Pillar II in the new basel accord: The challenge of economic capital, pp 423–453. Risk Books, Incisive Media, London (2008)

  • Tong, B., Wu, C., Xu, W.: Risk concentration of aggregated dependent risks: The second-order properties. Insurance: Math. Econ. 50(1), 139–149 (2012)

    MathSciNet  MATH  Google Scholar 

  • Vervaat, W.: Functional limit theorems for processes with positive drift and their inverses. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 23, 245–253 (1971)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Both authors are grateful to the referees, including the associate editor, for their insightful reviews of the manuscript and many helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikramjit Das.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Bikramjit Das gratefully acknowledges partial support from MOE2017- T2-2-161. Partial support from RARE-318984 (an FP7 Marie Curie IRSES Fellowship) is kindly acknowledged by both authors.

Appendix

Appendix

The diversification property relating the marginal risks to the aggregate risk in Theorem 3.4(2.a), can be easily extended to tail equivalent risks. We provide the result in the following.

Theorem 6.1

Let \(X\in 2\mathcal {RV}_{-\alpha ,\rho _{X}}(b_{X},A_{X},H_{X})\) and \(Y\in 2\mathcal {RV}_{-\alpha ,\rho _{Y}}(b_{Y},A_{Y},H_{Y})\) with α > 0,ρX < 0,ρY < 0 and

$$H_{X} (x):= \frac{c_{X}}{\rho_{X}}x^{-\alpha}(x^{\rho_{X}}-1), x>0, \quad\quad H_{Y}(x):= \frac{c_{Y }}{\rho_{ Y}}x^{-\alpha}(x^{\rho_{Y}}-1), x>0.$$

Assume that X and Y are tail equivalent risks, meaning that \(\displaystyle 0<\lim _{t\to \infty } b_{X}(t)/b_{Y}(t)<\infty \), and define \(\displaystyle \tilde {K}_{d}:=\lim _{t\to \infty } \frac {b_{Y}(t)}{d b_{ X}(t)}\). Then the following hold.

  1. i.

    If \(\displaystyle {\lim _{t\to \infty }A_{X}(b_{X}(t))/A_{Y}(b_{Y}(t)) =\kappa \in \mathbb {R}}\), then, for any x > 0, we have

    $$ \begin{array}{@{}rcl@{}} \lim_{t \to \infty} \frac1{ A_{Y}(b_{Y}(t))}\times\left( \frac{\text{VaR}_{1-x/t}(Y)}{d \text{VaR}_{1-x/t}(X)} - \tilde{K}_{d}\right) = \frac{(c_{Y}-\kappa c_{ X})\tilde{K}_{d}}{\alpha\rho_{Y}} (x^{{-\rho_{Y}/\alpha}}-1). \end{array} $$
  2. ii.

    If \(\displaystyle {\lim _{t\to \infty }A_{Y}(b_{Y}(t))/A_{X}(b_{X}(t)) =0}\), then, for any x > 0, we have

    $$ \begin{array}{@{}rcl@{}} \lim_{t \to \infty} \frac1{ A_{X}(b_{X}(t))}\times\left( \frac{\text{VaR}_{1-x/t}(Y)}{d \text{VaR}_{1-x/t}(X)} - \tilde{K}_{d}\right) = -\frac{c_{X}\tilde{K}_{d}}{\alpha\rho_{X}} (x^{{-\rho_{X}/\alpha}}-1). \end{array} $$

Proof

The proof of Theorem 6.1 is the same as that of Theorem 3.4(2.a) and can be obtained by replacing X1 by X, Sd by Y (with the corresponding parameters for the \(2\mathcal {RV}\) property), Dβ by \(\displaystyle \frac {\text {VaR}_{\beta }(Y)}{d \text {VaR}_{\beta }(X)}\), and Kd by \(\displaystyle \tilde {K}_{d}\) in the proof of Theorem 3.4(2.a). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, B., Kratz, M. Risk concentration under second order regular variation. Extremes 23, 381–410 (2020). https://doi.org/10.1007/s10687-020-00382-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-020-00382-3

Keywords

AMS 2000 Subject Classifications

Navigation