Skip to main content
Log in

Pheomelanin-based coloration is related to individual quality and oxidative stress in blue petrels

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

In several species, the rusty color of hair or feathers is due to pheomelanin pigments, whose adaptive function is unknown. Pheomelanin may be costly because it is phototoxic and its production consumes a key intracellular antioxidant. Pheomelanin-based traits are, however, positively associated with individual quality in several bird species, where they have thus been suggested to have evolved through sexual selection. Here we investigated the signaling potential of the pheomelanin-based coloration of the crown feathers in the blue petrel. Although this pelagic seabird is nocturnal at the breeding colony and breeds within deep burrows, it might use visual communication when settled on the water during daytime. We tested the correlation between crown color and several fitness-related traits, and we found that higher-quality females displayed less-orange crown than poorer-quality females. This result is inconsistent with an adaptive function of pheomelanin-based coloration in inter-, or intra-, sexual selection in females. We suggest that it might, however, be in line with a signaling function of eumelanin-based coloration, if inter-individual variations in orange coloration are mainly due to eumelanin-to-pheomelanin ratio, rather than to pheomelanin quantity. In contrast to females, we did not find strong evidence for associations between melanin-based coloration and individual quality in males, suggesting sex-specific selective pressures on melanin-based traits in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arai E, Hasegawa M, Nakamura M, Wakamatsu K (2015) Male pheomelanin pigmentation and breeding onset in barn swallows Hirundo rustica gutturalis. J Ornithol 156:419–427

    Google Scholar 

  • Arai E, Hasegawa M, Wakamatsu K, Ito S (2018) Males with more pheomelanin have a lower oxidative balance in Asian barn swallows (Hirundo rustica gutturalis). Zool Sci 35:505–514

    PubMed  Google Scholar 

  • Arai E, Hasegawa M, Sato M, Sakai H, Ito S, Wakamatsu K (2019) Eumelanin levels in rufous feathers explain plasma testosterone levels and survival in swallows. Ecol Evol 9:2755–2764

    PubMed  PubMed Central  Google Scholar 

  • Ariyomo TO, Watt PJ (2013) Disassortative mating for boldness decreases reproductive success in the guppy. Behav Ecol 24:1320–1326

    Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4. arXiv:1406.5823

  • Benedetto J-P, Ortonne J-P, Voulot C, Khatchadourian C, Prota G, Thivolet J (1982) Role of thiol compounds in mammalian melanin pigmentation. II. Glutathione and related enzymatic activities. J Investig Dermatol 79:422–424

    CAS  PubMed  Google Scholar 

  • Bize P, Devevey G, Monaghan P, Doligez B, Christe P (2008) Fecundity and survival in relation to resistance to oxidative stress in a free-living bird. Ecology 89:2584–2593

    PubMed  Google Scholar 

  • Bortolotti GR, González LM, Margalida A, Sánchez R, Oria J (2008) Positive assortative pairing by plumage colour in Spanish imperial eagles. Behav Process 78:100–107

    Google Scholar 

  • Bretagnolle V (1996) Acoustic communication in a group of nonpasserine birds, the petrels. Ecol Evol Acoust Commun Birds 160:177

    Google Scholar 

  • Brooke MDL (1989) Determination of the absolute visual threshold of a nocturnal seabird, the common diving petrel Pelecanoides urinatrix. Ibis 131:290–294

    Google Scholar 

  • Budden AE, Dickinson JL (2009) Signals of quality and age: the information content of multiple plumage ornaments in male western bluebirds Sialia mexicana. J Avian Biol 40:18–27

    Google Scholar 

  • Chaurand T, Weimerskirch H (1994a) Incubation routine, body mass regulation and egg neglect in the blue petrel Halobaena caerulea. Ibis 136:285–290

    Google Scholar 

  • Chaurand T, Weimerskirch H (1994b) The regular alternation of short and long foraging trips in the blue petrel Halobaena caerulea: a previously undescribed strategy of food provisioning in a pelagic seabird. J Anim Ecol 63:275–282

    Google Scholar 

  • Cohen Alan A, McGraw Kevin J, Wiersma P, Williams Joseph B, Robinson WD, Robinson Tara R et al (2008) Interspecific associations between circulating antioxidant levels and life-history variation in birds. Am Nat 172:178–193

    CAS  PubMed  Google Scholar 

  • Core Team R (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Costantini D (2008) Oxidative stress in ecology and evolution: lessons from avian studies. Ecol Lett 11:1238–1251

    PubMed  Google Scholar 

  • Costantini D, Bonadonna F (2010) Patterns of variation of serum oxidative stress markers in two seabird species. Polar Res 29:30–35

    CAS  Google Scholar 

  • Costantini D, Coluzza C, Fanfani A, Dell’Omo G (2007) Effects of carotenoid supplementation on colour expression, oxidative stress and body mass in rehabilitated captive adult kestrels (Falco tinnunculus). J Comp Physiol B 177:723–731

    CAS  PubMed  Google Scholar 

  • Ducrest A-L, Keller L, Roulin A (2008) Pleiotropy in the melanocortin system, coloration and behavioural syndromes. Trends Ecol Evol 23:502–510

    PubMed  Google Scholar 

  • El-Khairy L, Vollset SE, Refsum H, Ueland PM (2003) Plasma total cysteine, pregnancy complications, and adverse pregnancy outcomes: the Hordaland Homocysteine Study. Am J Clin Nutr 77:467–472

    CAS  PubMed  Google Scholar 

  • Furumura M, Sakai C, Abdel-Malek Z, Barsh GS, Hearing VJ (1996) The interaction of agouti signal protein and melanocyte stimulating hormone to regulate melanin formation in mammals. Pigment Cell Res 9:191–203

    CAS  PubMed  Google Scholar 

  • Galván I (2017) Condition-dependence of pheomelanin-based coloration in nuthatches Sitta europaea suggests a detoxifying function: implications for the evolution of juvenile plumage patterns. Sci Rep 7:9138

    PubMed  PubMed Central  Google Scholar 

  • Galván I (2018) Predation risk determines pigmentation phenotype in nuthatches by melanin-related gene expression effects. J Evol Biol 31:1760–1771

    PubMed  Google Scholar 

  • Galván I, Alonso-Alvarez C (2009) The expression of melanin-based plumage is separately modulated by exogenous oxidative stress and a melanocortin. Proc R Soc B 276:3089–3097

    PubMed  Google Scholar 

  • Galván I, Alonso-Alvarez C (2017) Individual quality via sensitivity to cysteine availability in a melanin-based honest signaling system. J Exp Biol 220:2825–2833

    PubMed  Google Scholar 

  • Galván I, Møller AP (2009) Different roles of natural and sexual selection on senescence of plumage colour in the barn swallow. Funct Ecol 23:302–309

    Google Scholar 

  • Galván I, Solano F (2009) The evolution of eu-and pheomelanic traits may respond to an economy of pigments related to environmental oxidative stress. Pigment Cell Melanoma Res 22:339–342

    PubMed  Google Scholar 

  • Galván I, Solano F (2016) Bird integumentary melanins: biosynthesis, forms, function and evolution. Int J Mol Sci 17:520

    PubMed  PubMed Central  Google Scholar 

  • Galván I, Alonso-Alvarez C, Negro JJ (2012a) Relationships between hair melanization, glutathione levels, and senescence in wild boars. Physiol Biochem Zool 85:332–347

    PubMed  Google Scholar 

  • Galván I, Ghanem G, Møller AP (2012b) Has removal of excess cysteine led to the evolution of pheomelanin? Pheomelanogenesis as an excretory mechanism for cysteine. BioEssays 34:565–568

    PubMed  Google Scholar 

  • Galván I, Jorge A, Ito K, Tabuchi K, Solano F, Wakamatsu K (2013) Raman spectroscopy as a non-invasive technique for the quantification of melanins in feathers and hairs. Pigment Cell Melanoma Res 26:917–923

    PubMed  Google Scholar 

  • Galván I, Inácio Â, Romero-Haro AA, Alonso-Alvarez C (2017) Adaptive downregulation of pheomelanin-related Slc7a11 gene expression by environmentally induced oxidative stress. Mol Ecol 26:849–858

    PubMed  Google Scholar 

  • Gasparini J, Bize P, Piault R, Wakamatsu K, Blount JD, Ducrest AL et al (2009) Strength and cost of an induced immune response are associated with a heritable melanin-based colour trait in female tawny owls. J Anim Ecol 78:608–616

    PubMed  Google Scholar 

  • Gerstenblith MR, Shi J, Landi MT (2010) Genome-wide association studies of pigmentation and skin cancer: a review and meta-analysis. Pigment Cell Melanoma Res 23:587–606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hau M, Haussmann MF, Greives TJ, Matlack C, Costantini D, Quetting M et al (2015) Repeated stressors in adulthood increase the rate of biological ageing. Front Zool 12:4

    PubMed  PubMed Central  Google Scholar 

  • Herborn KA, Daunt F, Heidinger BJ, Granroth-Wilding HMV, Burthe SJ, Newell MA et al (2016) Age, oxidative stress exposure and fitness in a long-lived seabird. Funct Ecol 30:913–921

    Google Scholar 

  • Hill GE (2014) Cellular respiration: the nexus of stress, condition, and ornamentation. Integr Comp Biol 54:645–657

    PubMed  Google Scholar 

  • Holveck M-J, Riebel K (2009) Low-quality females prefer low-quality males when choosing a mate. Proc R Soc B 277:153–160

    PubMed  Google Scholar 

  • Indykiewicz P, Podlaszczuk P, Surmacki A, Kudelska K, Kosicki J, Kamiński M et al (2017) Scale-of-choice effect in the assortative mating by multiple ornamental and non-ornamental characters in the black-headed gull. Behav Ecol Sociobiol 71:183

    Google Scholar 

  • Ito S, Wakamatsu K (2003) Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res 16:523–531

    PubMed  Google Scholar 

  • Jacquin L, Lenouvel P, Haussy C, Ducatez S, Gasparini J (2011) Melanin-based coloration is related to parasite intensity and cellular immune response in an urban free living bird: the feral pigeon Columba livia. J Avian Biol 42:11–15

    Google Scholar 

  • Jawor JM, Breitwisch R (2003) Melanin ornaments, honesty, and sexual selection. Auk 120:249–265

    Google Scholar 

  • Jiang Y, Bolnick DI, Kirkpatrick M (2013) Assortative mating in animals. Am Nat 181:E125–E138

    PubMed  Google Scholar 

  • Jones DP (2006) Redefining oxidative stress. Antioxid Redox Signal 8:1865–1879

    CAS  PubMed  Google Scholar 

  • Karell P, Ahola K, Karstinen T, Valkama J, Brommer JE (2011) Climate change drives microevolution in a wild bird. Nat Commun 2:208

    PubMed  PubMed Central  Google Scholar 

  • Kingsolver JG, Pfennig DW (2004) Individual-level selection as a cause of Copes’ rule of phyletic size increase. Evolution 58:1608–1612

    PubMed  Google Scholar 

  • Kinnaert E, Duez P, Morandini R, Dubois J, Van Houtte P, Ghanem G (2004) Cysteine but not glutathione modulates the radiosensitivity of human melanoma cells by affecting both survival and DNA damage. Pigment Cell Res 17:275–280

    CAS  PubMed  Google Scholar 

  • Krist M (2011) Egg size and offspring quality: a meta-analysis in birds. Biol Rev 86:692–716

    PubMed  Google Scholar 

  • Laucht S, Kempenaers B, Dale J (2010) Bill color, not badge size, indicates testosterone-related information in house sparrows. Behav Ecol Sociobiol 64:1461–1471

    PubMed  PubMed Central  Google Scholar 

  • Le Pape E, Wakamatsu K, Ito S, Wolber R, Hearing VJ (2008) Regulation of eumelanin/pheomelanin synthesis and visible pigmentation in melanocytes by ligands of the melanocortin 1 receptor. Pigment Cell Melanoma Res 21:477–486

    PubMed  PubMed Central  Google Scholar 

  • Leclaire S, Bourret V, Wagner RH, Hatch SA, Helfenstein F, Chastel O et al (2011) Behavioral and physiological responses to male handicap in chick-rearing black-legged kittiwakes. Behav Ecol 22:1156–1165

    Google Scholar 

  • Lu D, Willard D, Patel IR, Kadwell S, Overton L, Kost T et al (1994) Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature 371:799

    CAS  PubMed  Google Scholar 

  • Mariette MM, Griffith SC (2015) The adaptive significance of provisioning and foraging coordination between breeding partners. Am Nat 185:270–280

    PubMed  Google Scholar 

  • McGraw KJ (2006) Mechanics of melanin-based coloration. In: Hill GE, McGraw KJ (eds) Bird coloration. I. Mechanisms and measurements. Harvard University Press, Cambridge

    Google Scholar 

  • Metcalfe NB, Alonso-Alvarez C (2010) Oxidative stress as a life-history constraint: the role of reactive oxygen species in shaping phenotypes from conception to death. Funct Ecol 24:984–996

    Google Scholar 

  • Mitkus M, Nevitt GA, Danielsen J, Kelber A (2016) Vision on the high seas: spatial resolution and optical sensitivity in two procellariiform seabirds with different foraging strategies. J Exp Biol 219:3329–3338

    PubMed  Google Scholar 

  • Mitra D, Luo X, Morgan A, Wang J, Hoang MP, Lo J et al (2012) An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background. Nature 491:449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morales-Guerrero B, Gendron D, Martinez-Levasseur LM, Acevedo-Whitehouse K (2019) Blue whale (Balaenoptera musculus) skin contains eumelanin and pheomelanin. Aquat Mamm 45:88–98

    Google Scholar 

  • Nachman MW, Hoekstra HE, D’Agostino SL (2003) The genetic basis of adaptive melanism in pocket mice. Proc Natl Acad Sci USA 100:5268–5273

    CAS  PubMed  Google Scholar 

  • Napolitano A, Panzella L, Monfrecola G, d’Ischia M (2014) Pheomelanin-induced oxidative stress: bright and dark chemistry bridging red hair phenotype and melanoma. Pigment Cell Melanoma Res 27:721–733

    CAS  PubMed  Google Scholar 

  • Negro JJ, Bortolotti GR, Mateo R, García IM (2009) Porphyrins and pheomelanins contribute to the reddish juvenal plumage of black-shouldered kites. Comp Biochem Physiol B 153:296–299

    PubMed  Google Scholar 

  • Olney JW, Ho O-L (1970) Brain damage in infant mice following oral intake of glutamate, aspartate or cysteine. Nature 227:609–611

    CAS  PubMed  Google Scholar 

  • Orth MW, Bai Y, Zeytun IH, Cook ME (1992) Excess levels of cysteine and homocysteine induce tibial dyschondroplasia in broiler chicks. J Nutr 122:482–487

    CAS  PubMed  Google Scholar 

  • Panzella L, Leone L, Greco G, Vitiello G, D’Errico G, Napolitano A et al (2014) Red human hair pheomelanin is a potent pro-oxidant mediating UV-independent contributory mechanisms of melanomagenesis. Pigment Cell Melanoma Res 27:244–252

    CAS  PubMed  Google Scholar 

  • Pascual P, Pedrajas JR, Toribio F, López-Barea J, Peinado J (2003) Effect of food deprivation on oxidative stress biomarkers in fish (Sparus aurata). Chem Biol Interact 145:191–199

    CAS  PubMed  Google Scholar 

  • Peig J, Green AJ (2009) New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118:1883–1891

    Google Scholar 

  • Pérez-Rodríguez L, Viñuela J (2008) Carotenoid-based bill and eye ring coloration as honest signals of condition: an experimental test in the red-legged partridge (Alectoris rufa). Naturwissenschaften 95:821–830

    PubMed  Google Scholar 

  • Phillips RA, Bearhop S, Mcgill RAR, Dawson DA (2009) Stable isotopes reveal individual variation in migration strategies and habitat preferences in a suite of seabirds during the nonbreeding period. Oecologia 160:795–806

    PubMed  Google Scholar 

  • Potti J, Montalvo S (1991) Male colour variation in Spanish pied flycatchers Ficedula hypoleuca. Ibis 133:293–299

    Google Scholar 

  • Rodríguez-Martínez S, Márquez R, Inácio Â, Galván I (2019) Changes in melanocyte RNA and DNA methylation favour pheomelanin synthesis and may avoid systemic oxidative stress after dietary cysteine supplementation in birds. Mol Ecol 28:1030–1042

    PubMed  Google Scholar 

  • Roulin A (2003) Geographic variation in sexual dimorphism in the barn owl Tyto alba: a role for direct selection or genetic correlation? J Avian Biol 34:251–258

    Google Scholar 

  • Roulin A, Altwegg R (2007) Breeding rate is associated with pheomelanism in male and with eumelanism in female barn owls. Behav Ecol 18:563–570

    Google Scholar 

  • Roulin A, Ducret B, Ravussin P-A, Altwegg R (2003) Female colour polymorphism covaries with reproductive strategies in the tawny owl Strix aluco. J Avian Biol 34:393–401

    Google Scholar 

  • Roulin A, Almasi B, Meichtry-Stier KS, Jenni L (2011) Eumelanin- and pheomelanin-based colour advertise resistance to oxidative stress in opposite ways. J Evol Biol 24:2241–2247

    CAS  PubMed  Google Scholar 

  • Rowe KM, Weatherhead PJ (2011) Assortative mating in relation to plumage traits shared by male and female American robins. The Condor 113:881–889

    Google Scholar 

  • Safran RJ, McGraw KJ (2004) Plumage coloration, not length or symmetry of tail-streamers, is a sexually selected trait in North American barn swallows. Behav Ecol 15:455–461

    Google Scholar 

  • Schulte-Hostedde AI, Zinner B, Millar JS, Hickling GJ (2005) Restitution of mass–size residuals: validating body condition indices. Ecology 86:155–163

    Google Scholar 

  • Siefferman L, Hill GE (2003) Structural and melanin coloration indicate parental effort and reproductive success in male eastern bluebirds. Behav Ecol 14:855–861

    Google Scholar 

  • Singaravelan N, Pavlicek T, Beharav A, Wakamatsu K, Ito S, Nevo E (2010) Spiny mice modulate eumelanin to pheomelanin ratio to achieve cryptic coloration in “Evolution Canyon,” Israel. PLoS ONE 5:e8708

    PubMed  PubMed Central  Google Scholar 

  • Spoon TR, Millam JR, Owings DH (2006) The importance of mate behavioural compatibility in parenting and reproductive success by cockatiels, Nymphicus hollandicus. Anim Behav 71:315–326

    Google Scholar 

  • Stevens M, Cuthill IC (2005) The unsuitability of html-based colour charts for estimating animal colours—a comment on Berggren and Merilä (2004). Front Zool 2:14

    PubMed  PubMed Central  Google Scholar 

  • Stevens M, Stoddard MC, Higham JP (2009) Studying primate color: towards visual system-dependent methods. Int J Primatol 30:893–917

    Google Scholar 

  • Tickell WLN (1962) The dove prion, Pachyptila desolata Gmelin. HMSO, London

    Google Scholar 

  • Vágási CI, Pap PL, Barta Z (2010) Haste makes waste: accelerated molt adversely affects the expression of melanin-based and depigmented plumage ornaments in house sparrows. PLoS ONE 5:e14215

    PubMed  PubMed Central  Google Scholar 

  • van Franeker JA, van den Brink NW, Bathmann UV, Pollard RT, de Baar HJW, Wolff WJ (2002) Responses of seabirds, in particular prions (Pachyptila sp.), to small-scale processes in the Antarctic Polar Front. Deep Sea Res Part 2 Top Stud Oceanogr 49:3931–3950

    Google Scholar 

  • Vergara P, Fargallo JA, Martinez-Padilla J, Lemus JA (2009) Inter-annual variation and information content of melanin-based coloration in female Eurasian kestrels. Biol J Linn Soc 97:781–790

    Google Scholar 

  • Verhulst S, Nilsson J-Å (2008) The timing of birds’ breeding seasons: a review of experiments that manipulated timing of breeding. Philos Trans R Soc Lond B Biol Sci 363:399–410

    PubMed  Google Scholar 

  • Warham J (1996) The behaviour, population biology and physiology of the petrels. Academic Press, London

    Google Scholar 

  • Wasselin T, Zahn S, Maho YL, Dorsselaer AV, Raclot T, Bertile F (2014) Exacerbated oxidative stress in the fasting liver according to fuel partitioning. Proteomics 14:1905–1921

    CAS  PubMed  Google Scholar 

  • Wilson AJ, Nussey DH (2010) What is individual quality? An evolutionary perspective. Trends Ecol Evol 25:207–214

    PubMed  Google Scholar 

  • Zahavi A (1975) Mate selection—selection for a handicap. J Theor Biol 53:205–214

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Joris Laborie for his help during fieldwork, and Felipe Ramon-Portugal and Gilles Espinasse for their help during the first stage of pigment characterization. This work was supported by the Institut Polaire Français Paul-Emile Victor (IPEV, Program No. 354 to F.B.), and by a PDOC grant from the Agence Nationale de la Recherche (No. ANR-13-PDOC-0002 to S.L.). This study was approved by the French Ethical Committee (APAFIS#: 9496-201707131540776v2), after favorable recommendation by the “comité d’éthique pour l’expérimentation animale - Languedoc-Roussillon”, and the ethical committees of “réserve naturelle des Terres Australes et Antarctiques Françaises (TAAF)” and of “Institut Polaire Rrançais Paul-Emile Victor (IPEV)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Leclaire.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 182 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leclaire, S., Perret, S., Galván, I. et al. Pheomelanin-based coloration is related to individual quality and oxidative stress in blue petrels. Evol Ecol 33, 873–887 (2019). https://doi.org/10.1007/s10682-019-10010-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-019-10010-7

Keywords

Navigation