Skip to main content

Advertisement

Log in

Phenotypic differentiation in a resilient dung beetle species induced by forest conversion into cattle pastures

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Forest conversion into lands for different uses is a widespread practice in tropical and subtropical regions. Such anthropogenic disturbance drastically modifies environmental conditions and availability of resources for species (ecological niche). While many species usually disappear or become rare, other (resilient species) persist in the disturbed areas, being subject to new and often stressful conditions (ecological filters). The issue of whether human-driven habitat modifications induce phenotypic changes in resilient organisms at the intraspecific level has been poorly studied thus far. In this study, we used the neotropical dung beetle Canthon quinquemaculatus to test the hypothesis that the conversion of native forest into open cattle pastures can induce phenotypic differentiation in the functional morphology of resilient species. Sexual dimorphism and year of collection were simultaneously evaluated as potential sources of intraspecific variation in the measured morphological traits. We measured several functional traits related to thermal niche, burrowing capacity and food resource manipulation, including body size and shape and the size of the anterior leg and its constitutive parts. We found significant morphological differentiation between habitats (native forest vs. cattle pasture), sexes and years in terms of multi- and single-trait comparisons. Individuals from cattle pastures were smaller and less spherical (because of lower body thickness) compared to individuals from native forest. Males were larger with bigger anterior tibia and femur while females were more spherical. The phenotypic differences observed between individuals from native and converted habitats could be attributed to plasticity and/or contemporary (adaptive) evolution. From an ecological viewpoint, this study shows that habitat disturbance may affect morphological variation and functional diversity at the intraspecific level which may in turn influence ecosystem functions that dung beetles perform (i.e. dung burial).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Gómez-Cifuentes et al. (2018)

Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alves VM, Medina Hernández MI (2017) Morphometric modifications in (Coleoptera: Scarabaeinae): sublethal effects of transgenic maize? Insects 8:115

    Article  PubMed Central  Google Scholar 

  • Atkinson D, Sibly RM (1997) Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol Evol 12:235–239

    Article  CAS  PubMed  Google Scholar 

  • Barragán F, Moreno CE, Escobar F et al (2011) Negative impacts of human land use on dung beetle functional diversity. PLoS ONE 6:e17976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barragán F, Moreno CE, Escobar F et al (2014) The impact of grazing on dung beetle diversity depends on both biogeographical and ecological context. J Biogeogr 41:1991–2002

    Article  Google Scholar 

  • Bartholomew GA, Heinrich B (1978) Endothermy in African dung beetles during flight, ball making, and ball rolling. J Exp Biol 73:65–83

    Google Scholar 

  • Cantil ALF, Sánchez MV, Dinghi PA, Genise JF (2014) Food relocation behavior, nests, and brood balls of Canthon quinquemaculatus Laporte de Castelnau (Coleoptera: Scarabaeidae: Scarabaeinae). Coleopt Bull 68:199–208

    Article  Google Scholar 

  • Carroll SP, Boyd C (1992) Host race radiation in the soapberry bug: natural history with the history. Evolution 46:1052–1069

    Article  PubMed  Google Scholar 

  • Cultid-Medina CA, Martínez-Quintero BG, Escobar F, de Ulloa PC (2015) Movement and population size of two dung beetle species in an Andean agricultural landscape dominated by sun-grown coffee. J Insect Conserv 19:617–626

    Article  Google Scholar 

  • Di Bitetti MS, Placci LG, Dietz LA (2003) A biodiversity vision for the Upper Paraná Atlantic Forest eco-region: designing a biodiversity conservation landscape and setting priorities for conservation action. WWF, Washington, USA

    Google Scholar 

  • Dirzo R, Young HS, Galetti M, Ceballos G (2014) Defaunation in the Anthropocene. Science 345:401–406

    Article  CAS  PubMed  Google Scholar 

  • Duflot R, Georges R, Ernoult A et al (2014) Landscape heterogeneity as an ecological filter of species traits. Acta Oecol 56:19–26

    Article  Google Scholar 

  • Eloy de Amorim ME, Schoener TW, Santoro GRCC et al (2017) Lizards on newly created islands independently and rapidly adapt in morphology and diet. Proc Natl Acad Sci 114:8812–8816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emlen DJ (1994) Environmental control of horn length dimorphism in the beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Proc R Soc B Biol Sci 256:131–136

    Article  Google Scholar 

  • Emlen DJ (1997) Diet alters male horn allometry in the beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Proc R Soc B Biol Sci 264:567–574

    Article  Google Scholar 

  • Evans MEG, Forsythe TG (1984) A comparison of adaptations to running, pushing and burrowing in some adult Coleoptera: especially Carabidae. J Zool 202:513–534

    Article  Google Scholar 

  • Forsythe TG (1981) Running and pushing in relationship to hind leg structure in some Carabidae (Coleoptera). Coleopt Bull 35:353–378

    Google Scholar 

  • Fox J, Friendly M, Weisberg S (2013) Hypothesis tests for multivariate linear models using the car package. R J 5:39–52

    Article  Google Scholar 

  • Futuyma DJ (2005) Evolution. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Gallego B, Verdú JR, Carrascal LM, Lobo JM (2017) Thermal tolerance and recovery behaviour of Thorectes lusitanicus (Coleoptera, Geotrupidae). Ecol Entomol 42:758–767

    Article  Google Scholar 

  • Gardner TA, Hernández MIM, Barlow J, Peres CA (2008) Understanding the biodiversity consequences of habitat change: the value of secondary and plantation forests for neotropical dung beetles. J Appl Ecol 45:883–889

    Article  Google Scholar 

  • Gardner JL, Peters A, Kearney MR et al (2011) Declining body size: a third universal response to warming? Trends Ecol Evol 26:285–291

    Article  PubMed  Google Scholar 

  • Garland T, Adolph SC (1991) Physiological differentiation of vertebrate populations. Annu Rev Ecol Syst 22:193–228

    Article  Google Scholar 

  • Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21:394–407

    Article  Google Scholar 

  • Giménez Gómez VC, Verdú JR, Gómez-Cifuentes A et al (2018a) Influence of land use on the trophic niche overlap of dung beetles in the semideciduous Atlantic forest of Argentina. Insect Conserv Divers 11:554–564

    Article  Google Scholar 

  • Giménez Gómez VC, Verdú JR, Guerra Alonso CB, Zurita GA (2018b) Relationship between land uses and diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic forest of Argentina: which are the key factors? Biodivers Conserv 27:3201–3213

    Article  Google Scholar 

  • Gómez-Cifuentes A, Munevar A, Gimenez VC et al (2017) Influence of land use on the taxonomic and functional diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic forest of Argentina. J Insect Conserv 21:147–156

    Article  Google Scholar 

  • Gómez-Cifuentes A, Giménez Gómez VC, Moreno CE, Zurita GA (2018) Tree retention in cattle ranching systems partially preserves dung beetle diversity and functional groups in the semideciduous Atlantic forest: the role of microclimate and soil conditions. Basic Appl Ecol 34:64–74

    Article  Google Scholar 

  • Griffiths HM, Louzada J, Bardgett RD, Barlow J (2016) Assessing the importance of intraspecific variability in dung beetle functional traits. PLoS ONE 11:e0145598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halffters G, Edmonds WD (1982) The nesting behavior of dung beetles (Scarabaeinae): an ecological and evolutive approach. Instituto de Ecología, México

    Google Scholar 

  • Hendry AP, Farrugia TJ, Kinnison MT (2008) Human influences on rates of phenotypic change in wild animal populations. Mol Ecol 17:20–29

    Article  PubMed  Google Scholar 

  • Horgan FG (2001) Burial of bovine dung by coprophagous beetles (Coleoptera: Scarabaeidae) from horse and cow grazing sites in El Salvador. Eur J Soil Biol 37:103–111

    Article  Google Scholar 

  • Iezzi ME, Cruz P, Varela D et al (2018) Tree monocultures in a biodiversity hotspot: impact of pine plantations on mammal and bird assemblages in the Atlantic Forest. For Ecol Manag 424:216–227

    Article  Google Scholar 

  • Inward DJG, Davies RG, Pergande C et al (2011) Local and regional ecological morphology of dung beetle assemblages across four biogeographic regions. J Biogeogr 38:1668–1682

    Article  Google Scholar 

  • Izquierdo AE, De Angelo CD, Aide TM (2008) Thirty years of human demography and land-use change in the Atlantic Forest of Misiones, Argentina: an evaluation of the forest transition model. Ecol Soc 13:3

    Article  Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241

    Article  Google Scholar 

  • King TL, Zimmerman EG, Beitinger TL (1985) Concordant variation in thermal tolerance and allozymes of the red shiner, Notropis lutrensis, inhabiting tailwater sections of the Brazos River, Texas. Environ Biol Fishes 13:49–57

    Article  Google Scholar 

  • Kingsolver JG, Huey RB (2008) Size, temperature, and fitness: three rules. Evol Ecol Res 10:251–268

    Google Scholar 

  • Kinnison MT, Hairston NG (2007) Eco-evolutionary conservation biology: contemporary evolution and the dynamics of persistence. Funct Ecol 21:444–454

    Article  Google Scholar 

  • Kinnison MT, Hendry AP, Stockwell CA (2007) Contemporary evolution meets conservation biology II: impediments to integration and application. Ecol Res 22:947–954

    Article  Google Scholar 

  • Kurten EL (2013) Cascading effects of contemporaneous defaunation on tropical forest communities. Biol Conserv 163:22–32

    Article  Google Scholar 

  • LaBarbera M (1989) Analyzing body size as a factor in ecology and evolution. Annu Rev Ecol Syst 20:97–117

    Article  Google Scholar 

  • Larsen TH, Williams NM, Kremen C (2005) Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol Lett 8:538–547

    Article  PubMed  Google Scholar 

  • Larsen TH, Lopera A, Forsyth A (2008) Understanding trait-dependent community disassembly: dung beetles, density functions, and forest fragmentation. Conserv Biol 22:1288–1298

    Article  PubMed  Google Scholar 

  • Laurance WF (1998) A crisis in the making: responses of Amazonian forests to land use and climate change. Trends Ecol Evol 13:411–415

    Article  CAS  PubMed  Google Scholar 

  • Laurance WF, Lovejoy T, Vasconcelos H et al (2002) Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv Biol 16:605–618

    Article  Google Scholar 

  • Lindenmayer DB, Laurance WF, Franklin JF (2012) Global decline in large old trees. Science 338:1305–1306

    Article  CAS  PubMed  Google Scholar 

  • Lövei GL, Sunderland KD (1996) Ecology and behaviour of ground beetles (Coleoptera: Carabidae). Annu Rev Entomol 41:231–256

    Article  PubMed  Google Scholar 

  • Markl JS, Schleuning M, Forget PM et al (2012) Meta-analysis of the effects of human disturbance on seed dispersal by animals. Conserv Biol 26:1072–1081

    Article  PubMed  Google Scholar 

  • Medina CA, Scholtz CH, Gill BD (2008) Morphological variation and systematics of Canthon Hoffmansegg 1817, and related genera of new world Canthonini dung beetles (Coleoptera, Scarabaeinae). Dtsch Entomol Zeitschrift 50:23–68

    Article  Google Scholar 

  • Merilä J, Hendry AP (2014) Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol Appl 7:1–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Merrick M, Smith RJ (2004) Temperature regulation in burying beetles (Nicrophorus spp.: Coleoptera: Silphidae): effects of body size, morphology and environmental temperature. J Exp Biol 207:723–733

    Article  PubMed  Google Scholar 

  • Moczek AP (2002) Allometric plasticity in a polyphenic beetle. Ecol Entomol 27:58–67

    Article  Google Scholar 

  • Moczek AP, Nijhout HF (2003) Rapid evolution of a polyphenic threshold. Evol Dev 5:259–268

    Article  PubMed  Google Scholar 

  • Mouillot D, Graham NAJ, Villéger S et al (2013) A functional approach reveals community responses to disturbances. Trends Ecol Evol 28:167–177

    Article  PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Neckel-Oliveira S, Gascon C (2006) Abundance, body size and movement patterns of a tropical treefrog in continuous and fragmented forests in the Brazilian Amazon. Biol Conserv 128:308–315

    Article  Google Scholar 

  • Nichols E, Larsen T, Spector S et al (2007) Global dung beetle response to tropical forest modification and fragmentation: a quantitative literature review and meta-analysis. Biol Conserv 137:1–19

    Article  Google Scholar 

  • Nichols E, Spector S, Louzada J et al (2008) Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol Conserv 141:1461–1474

    Article  Google Scholar 

  • Nichols E, Uriarte M, Bunker DE et al (2013) Trait- dependent response of dung beetle populations to tropical forest conversion at local and regional scales. Ecology 93:180–189

    Article  Google Scholar 

  • Oliveira-Filho AT, Fontes MAL (2000) Patterns of floristic differentiation among Atlantic Forests in southeastern Brazil and the influence of climate. Biotropica 32:793–810

    Article  Google Scholar 

  • Palumbi SR (2001) Humans as the world’s greatest evolutionary force. Science 293:1786–1790

    Article  CAS  PubMed  Google Scholar 

  • Peters RH (1983) The ecological implications of body size, first. Cambridge University Press, New York

    Book  Google Scholar 

  • Peyras M, Vespa NI, Bellocq MI, Zurita GA (2013) Quantifying edge effects: the role of habitat contrast and species specialization. J Insect Conserv 17:807–820

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, et al (2017) Package “nlme”. Linear and nonlinear mixed effect models. R package version 3.1

  • Post DM, Palkovacs EP (2009) Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Philos Trans R Soc B Biol Sci 364:1629–1640

    Article  Google Scholar 

  • Pritchard JK, Pickrell JK, Coop G (2010) The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation. Curr Biol 20:R208–R221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raine EH, Gray CL, Mann DJ, Slade EM (2018) Tropical dung beetle morphological traits predict functional traits and show intraspecific differences across land uses. Ecol Evol 8:8686–8696

    Article  PubMed  PubMed Central  Google Scholar 

  • Reznick DN, Ghalambor CK (2001) The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112–113:183–198

    Article  PubMed  Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC et al (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  • Ribera I, Foster GN, Downie IS et al (1999) A comparative study of the morphology and life traits of Scottish ground beetles (Coleoptera, Carabidae). Ann Zoo Fenn 36:21–37

    Google Scholar 

  • Ripple WJ, Newsome TM, Wolf C et al (2015) Collapse of the world’s largest herbivores. Sci Adv 1:e1400103

    Article  PubMed  PubMed Central  Google Scholar 

  • Rohr JR, Raffel TR, Romansic JM et al (2008) Evaluating the links between climate, disease spread, and amphibian declines. Proc Natl Acad Sci 105:17436–17441

    Article  PubMed  PubMed Central  Google Scholar 

  • Saetre CLC, Coleiro C, Austad M et al (2017) Rapid adaptive phenotypic change following colonization of a newly restored habitat. Nat Commun 8(14159):1–6

    Google Scholar 

  • Schoener TW (2011) The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331:426–429

    Article  CAS  PubMed  Google Scholar 

  • Scholtz CH, Davis ALV, Kryger U (2009) Evolutionary biology and conservation of dung beetles, 1st edn. PENSOFT Publishers, Bulgaria

    Google Scholar 

  • Skole DL, Tucker CJ (1993) Tropical deforestation and habitat fragmentation in the Amazon: satellite data from 1978 to 1988. Science 260:1905–1910

    Article  CAS  PubMed  Google Scholar 

  • Sneed ED, Folk RL (1958) Pebbles in the lower Colorado River, Texas a study in particle morphogenesis. J Geol 66:114–150

    Article  Google Scholar 

  • Stockwell C, Hendry A, Kinnison M (2003) Contemporary evolution meets conservation biology. Trends Ecol Evol 18:94–101

    Article  Google Scholar 

  • Stork NE (2010) Re-assessing current extinction rates. Biodivers Conserv 19:357–371

    Article  Google Scholar 

  • Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66

    Article  Google Scholar 

  • Verdú JR, Arellano L, Numa C (2006) Thermoregulation in endothermic dung beetles (Coleoptera: Scarabaeidae): effect of body size and ecophysiological constraints in flight. J Insect Physiol 52:854–860

    Article  CAS  PubMed  Google Scholar 

  • Wagner DN, Baris TZ, Dayan DI, Olaksiak MF, Crawford DL (2017) Fine-scale genetic structure due to adaptive divergence among microhabitats. Heredity 118:594–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zurita GA, Bellocq MI (2010) Spatial patterns of bird community similarity: bird responses to landscape composition and configuration in the Atlantic forest. Landsc Ecol 25:147–158

    Article  Google Scholar 

  • Zurita GA, Pe’er G, Bellocq MI (2017) Bird responses to forest loss are influence by habitat specialization. Divers Distrib 23:650–655

    Article  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the the UCAR-MAGyP (BIO 23, PIA 12052 and PIA 10105) and CONICET. National Park Administration, the Misiones Ministry of Ecology and Arauco Argentina S.A. provided the necessary permissions to collect dung beetles. Mariana Di Rocco helped us with the English of this manuscript and Dr. J.R. Verdú Farraco with the selection of functional traits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo A. Zurita.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Figs. 4, 5 and Tables 2, 3, 4.

Fig. 4
figure 4figure 4

Measured morphological traits in Canthon quinquemaculatus in dorsal, ventral and lateral views

Fig. 5
figure 5

Allometric relations for morphological traits in Canthon quinquemaculatus in the southern Atlantic Forest of Argentina. Empty circles: females; filled circles: males

Table 2 Sampling site locations and forest cover, and number of collected individuals in the southern Atlantic Forest of Argentina
Table 3 Regression coefficients between body area and other morphological traits in Canthon quinquemaculatus before and after allometric correction
Table 4 Chi square values from GLM analysis for morphological traits of C. quinquemaculatus in the Atlantic Forest of Argentina according to sexual dimorphism, habitat type and year of collection

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soto, C.S., Giombini, M.I., Giménez Gómez, V.C. et al. Phenotypic differentiation in a resilient dung beetle species induced by forest conversion into cattle pastures. Evol Ecol 33, 385–402 (2019). https://doi.org/10.1007/s10682-019-09987-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-019-09987-y

Keywords

Navigation