Skip to main content

Advertisement

Log in

Effect of Building Orientations on Gaseous Dispersion in Street Canyon: a Numerical Study

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

This paper studies the effects of building orientations on the gaseous pollutant dispersion released from vehicles exhaust in street canyons through computational fluid dynamics (CFD) numerical simulations using three kε turbulence models. Four building orientations of the street canyon were examined in the atmospheric boundary layer. The numerical results were validated against wind-tunnel results to optimize the turbulence models. The numerical results agreed well with the wind-tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height in the street canyon was on the windward side for the building orientations θ = 112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the building orientation increases from θ = 90°. The concentration in the cavity region for the building orientation θ = 90° was higher than for the wind directions θ = 112.5°, 135°, and 157.5°. The wind velocity and turbulence energy increase as the building orientation increases. The finding from this work can be used to help urban designers and policy-makers in several aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. ANSYS Inc. (2010). ANSYSFLUENT software. http://www.ansys.com.

  2. Assimakopoulos, V. D., Apsimon, H. M., & Moussiopoulos, N. A. (2003). Numerical study of atmospheric pollutant dispersion in different two-dimensional street canyon configurations. Atmospheric Environment, 37(29), 4037–4049.

    Article  CAS  Google Scholar 

  3. Baik, J.-J., Park, R.-S., Chun, H.-Y., & Kim, J.-J. (2000). A laboratory model of urban street-canyon flows. Journal of Applied Meteorology, 39, 1592–1600.

    Article  Google Scholar 

  4. Baik, J.-J., & Kim, J.-J. (2002). On the escape of pollutants from urban street canyons. Atmospheric Environment, 36, 527–536.

    Article  CAS  Google Scholar 

  5. Caton, F., Britter, R. E., & Dalziel, S. (2003). Dispersion mechanisms in a street canyon. Atmospheric Environment, 37, 693–702.

    Article  CAS  Google Scholar 

  6. Chan, T. L., Dong, G., Cheung, C. S., Leung, C. W., Wong, C. P., & Wung, W. T. (2001). A Monte Carlo simulation of nitrogen oxides dispersion from a vehicular exhaust plume and its sensitivity studies. Atmospheric Environment, 35, 6117–6127.

    Article  CAS  Google Scholar 

  7. Chan, A. T., Au, W. T. W., & So, E. S. P. (2001). Strategic guidelines for street canyon geometry to achieve sustainable street air quality. Atmospheric Environment, 35, 5681–5691.

    Article  Google Scholar 

  8. Chan, A. T., Au, W. T. W., & So, E. S. P. (2003). Strategic guidelines for street canyon geometry to achieve sustainable street air quality—part II: multiple canopies and canyons. Atmospheric Environment, 37, 2761–2772.

    Article  CAS  Google Scholar 

  9. Cheng, W. C., Liu, C.-H., & Leung, D. Y. C. (2009). On the correlation of air and pollutant exchange for street canyons in combined wind-buoyancy-driven flow. Atmospheric Environment, 43, 3682–3690.

    Article  CAS  Google Scholar 

  10. Costabile, F., & Allegrini, I. (2007). Measurements and analyses of nitrogen oxides and ozone in the yard and on the roof of a street-canyon in Suzhou. Atmospheric Environment, 41, 6637–6647.

    Article  CAS  Google Scholar 

  11. Di Sabatino, S., Buccolieri, R., Pulvirenti, B., & Britter, R. E. (2008). Flow and pollutant dispersion in street canyons using FLUENT and ADMS-Urban. Environmental Modeling and Assessment, 13, 369–381.

    Article  Google Scholar 

  12. Eliasson, I., Offerle, B., Grimmond, C. S. B., & Lindqvist, S. (2006). Wind fields and turbulence statistics in an urban street canyon. Atmospheric Environment, 40, 1–16.

    Article  CAS  Google Scholar 

  13. Huang, Y., Jin, M., & Sun, Y. (2006). Numerical studies on airflow and pollutant dispersion in urban street canyons formed by slanted roof buildings. Journal of Hydrodynamics, 19(1), 100–106.

    Article  Google Scholar 

  14. Huang, Y., Hu, X., & Zeng, N. (2009). Impact of wedge-shaped roofs on airflow and pollutant dispersion inside urban street canyons. Building and Environment, 44(2009), 2335–2347.

    Article  Google Scholar 

  15. Jeong, S. J., & Andrews, M. J. (2002). Application of the k-e turbulence model to the high Reynolds number skimming flow field of an urban street canyon. Atmospheric Environment, 36, 1137–1145.

    Article  CAS  Google Scholar 

  16. Kastner-Klein, P., Berkowicz, R., & Britter, R. (2004). The influence of street architecture on flow and dispersion in streets canyons. Meteorology and Atmospheric Physics, 87, 121–131.

    Article  Google Scholar 

  17. Kim, J. -J., & Baik, J. -J., (2004). A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k-ε turbulence model. Atmospheric Environment 38, 3039–3048.

    Google Scholar 

  18. Koutsourakis, N., Neofytou, P., Venetsanos, A. G., & Bartzis, J. G. (2004). Parametric study of the dispersion aspects in a street canyon area. International Journal Environment and Pollution, 25, 155–163.

    Article  Google Scholar 

  19. Launder, B. E., & Spalding, D. E. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3, 269–289.

    Article  Google Scholar 

  20. Liu, C. H., & Barth, M. C. (2002). Large-eddy simulation of flow and scalar transport in a modeled street. Journal of Applied Meteorology, 41, 660–673.

    Article  Google Scholar 

  21. Murena, F., Favale, G., Vardoulakis, S., & Solazzo, E. (2009). Modeling dispersion of traffic pollution in a deep street canyon: application of CFD and operational models. Atmospheric Environment, 43, 2303–2311.

    Article  CAS  Google Scholar 

  22. Nazridoust, K., & Ahmadi, G. (2006). Airflow and pollutant transport in street canyons. Journal of Wind Engineering and Industrial Aerodynamics, 94(6), 491–522.

    Article  Google Scholar 

  23. Oke, T. O., (1988). Street design and urban canopy layer climate, Energy Buildings 11, 103–113.

    Google Scholar 

  24. Patankar, S. V. (1980). Numerical heat transfer and fluid flow. New York: McGraw-Hill.

    Google Scholar 

  25. Rotach, M. W. (1995). Profiles of turbulence statistics in and above an urban street canyon. Atmospheric Environment, 29, 1473–1486.

    Article  CAS  Google Scholar 

  26. Sagrado, A. P. G., Beeck, J., Rambaud, P., & Olivari, D. (2002). Numerical and experimental modeling of pollutant dispersion in a street canyon. Journal of Wind Engineering and Industrial Aerodynamics, 90(4–5), 321–339.

    Article  Google Scholar 

  27. Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z., & Zhu, J. (1995). A new κ-ε eddy viscosity model for high Reynolds number turbulent flows. Computers and Fluids, 24, 227–238.

    Article  Google Scholar 

  28. Soulhac, L., & Salizzoni, P. (2010). Dispersion in a street canyon for a wind direction parallel to the street axis. Journal of Wind Engineering and Industrial Aerodynamics, 98, 903–910.

    Article  Google Scholar 

  29. Xia, J. Y., Hussaini, M. Y., & Leung, D. Y. C. (2005). Numerical simulation of street canyon flows with simple building geometries. Journal of Environmental Engineering, 131(7), 1099–1105.

    Article  CAS  Google Scholar 

  30. Xie, X., Huang, Z., & Wang, J. (2005). Impact of building configuration on air quality in street canyon. Atmospheric Environment, 39(25), 4519–4530.

    Article  CAS  Google Scholar 

  31. Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. Journal of Scientific Computing, 1, 1–51.

    Article  Google Scholar 

  32. Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A, 4(7), 1510–1520.

    Article  CAS  Google Scholar 

  33. Yassin, M. F., Kellnerov, R., & Janour, Z. (2008). Impact of street intersections on air quality in an urban environment. Atmospheric Environment, 42(20), 4948–4963.

    Article  CAS  Google Scholar 

  34. Yassin, M. F. (2011). Impact of height and shape of building roof on air quality in urban street canyons. Atmospheric Environment, 45(29), 5220–5229.

    Article  CAS  Google Scholar 

  35. Yassin, M. F., & Ohba, M. (2012). Effect of street geometrical layout on dispersion emissions of traffic exhaust: experimental simulation. Clean Technologies and Environmental Policy, 15, 167–177. doi:10.1007/s10098-012-0495-0.

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank the anonymous reviewers for providing valuable comments on this work. The project research is funded by Kuwait University (no. WR04/12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed F. Yassin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yassin, M.F., Kassem, M.A. Effect of Building Orientations on Gaseous Dispersion in Street Canyon: a Numerical Study. Environ Model Assess 19, 335–344 (2014). https://doi.org/10.1007/s10666-013-9389-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-013-9389-8

Keywords

Navigation