Skip to main content
Log in

Multidomain Chebyshev pseudo-spectral method applied to the Poisson–Boltzmann equation for two parallel plates

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

We address a boundary-value problem involving a Poisson–Boltzmann equation that models the electrostatic potential of a channel formed by parallel plates with an electrolyte solution confined between the plates. We show the existence and uniqueness of solution to the problem, with special (particular) solutions as bounds, namely, a Debye–Hückel type solution as lower bound and a Gouy–Chapman type solution as upper bound. Our results are based on the maximum principle for elliptic equations and are useful for characterizing the behavior of the solutions. Also, we introduce a numerical scheme based on the Chebyshev pseudo-spectral method to calculate approximate solutions. This method is applied in conjunction with a multidomain procedure that attempts to capture the dramatic exponential increase/decay of the solution near the plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chang CC, Yang RJ (2009) A perspective on streaming current in silica nanofluidic channels: Poisson-Boltzmann model versus Poisson-Nernst-Planck model. J Colloid and Interface Science 339:517–520

    Article  Google Scholar 

  2. Jamaati J, Niezmand H, Renksizbulut M (2010) Pressure-driven electrokinetic slip-flow in planar microchannel. Int J Thermal Sciences 49:1165–1174

    Article  Google Scholar 

  3. Van der Heyden FHJ, Stein D, Dekker C (2005) Streaming Currents in a Single Nanofluidic Channel. Phys Rev Letters 95:116104

    Article  Google Scholar 

  4. Behrens SH, Borkovec M (1999) Exact Poisson–Boltzmann solution for the interaction of dissimular charge-regulating surfaces. Phys Rev E 60:7040–7048

    Article  Google Scholar 

  5. Ren CL (2004) A new model for the electrical double layer interaction between two surfaces in aqueous solutions. J Adhesion 80:831–849

    Article  Google Scholar 

  6. Yaakov DB, Andelman D, Harries D, Podgornik R (2009) Ions in Mixed Dielectric Solvents: Density Profiles and Osmotic Pressure between Charged Interfaces. J Phys Chem. B 113:6001–6011

    Article  Google Scholar 

  7. Gray CG, Stiles PJ (2018) Nonlinear electrostatics: the Poisson-Boltzmann equation. European Journal of Physics 39:053002

    Article  Google Scholar 

  8. Israelachvili JN (2011) Intermolecular and Surface Forces, 3rd edn. Academic Press, New York

    Google Scholar 

  9. Lamm G (2003) The Poisson-Boltzmann Equation. In: Reviews in Computational Chemistry, vol 19. John Wiley and Sons, Hoboken, pp 147–333

  10. Xiang-Yu S, Chen Y, Guo-Qing Z (2015) Closed-form solution of mid-potential between two parallel charged plates with more extensive applications. Chin Phys B 24:108203

    Article  Google Scholar 

  11. Xing X (2011) Poisson-Boltzmann theory for two parallel uniformly charged plates. Phys Rev E 83:041410

    Article  Google Scholar 

  12. Bedin L, Bazán FSV, Giordani FT (2019) Analysis and spline approximation of surface charge and potential at planar electrochemical interfaces. Math Meth Appl Sci 42(18):6490–6504

    Article  MathSciNet  Google Scholar 

  13. Tracy CA, Widom H (1997) On exact solutions to the cylindrical Poisson-Boltzmann equation with applications to polyelectrolytes. Physica A 244:402–413

    Article  MathSciNet  Google Scholar 

  14. Johannnessen K (2012) A Nonlinear Differential Equation Related to the Jacobi Elliptic Functions. Int J Diff Equ, ID 412569

  15. Johannessen K (2014) The exact solution of the one-dimensional Poisson-Boltzmann equation with asymmetric boundary conditions. J Math Chem 52:504–507

    Article  MathSciNet  Google Scholar 

  16. Polat M, Polat H (2010) Analytical solution of Poisson-Boltzmann equation for interacting plates of arbitrary potentials and same sign. J Coll Interface Sci 341:178–185

    Article  Google Scholar 

  17. Zhang W, Wang Q, Zeng M, Zhao C (2018) An exact solution of the nonlinear Poisson-Boltzmann equation in parallel-plate geometry. Colloid and Polymer Science 296:1917–1923

    Article  Google Scholar 

  18. Trefethen LN (2000) Spectral Methods in Matlab. SIAM, Philadelphia

    Book  Google Scholar 

  19. Canuto C, Hussaini MY, Quarteroni A, Zang TA (2007) Spectral Methods. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  20. Kopriva DA (2009) Implementing Spectral Methods for Partial Differential Equations. Springer, Netherlands, New York

    Book  Google Scholar 

  21. Taleei A, Dehghan M (2014) A pseudo-spectral method that uses an overlapping multidomain technique for the numerical solution of sine-Gordon equation in one and two spatial dimensions. Math meth in the App Sci 37:1909–1923

    Article  MathSciNet  Google Scholar 

  22. Akyildiz FT, Vajravelu K (2018) Galerkin-Chebyshev pseudo spectral method and a split step new approach for a class of two dimensional semi-linear parabolic equations of second order. Appl Math Nonlinear Sci 3:255–264

    Article  MathSciNet  Google Scholar 

  23. Bedin L, Bazán FSV (2017) A note on existence and uniqueness of solutions for a 2D bioheat problem. Appl Analysis 96:590–605

    Article  MathSciNet  Google Scholar 

  24. Figliuzzi B, Chan WHR, Buie CR, Moran JL (2016) Nonlinear electrophoresis in the presence of dielectric decrement. Phys Rev E 94:023115

    Article  Google Scholar 

  25. Hsu JP, Min WL, Lee E (2007) Dynamic electrophoresis of dropled dispersions at low surface potentials. J Coll Interface Sci 306:421–427

    Article  Google Scholar 

  26. Lou J, Shih C-Y, Lee E (2010) Diffusiophoresis of Concentrated Suspensions of Spherical Particles with Charge-regulated Surface: Polarization Effect with Nonlinear Poisson-Boltzmann Equation. Langmuir 26:47–55

    Article  Google Scholar 

  27. Nikzad S, Noshad H, Motevali E (2017) Study of nonlinear Poisson-Boltzmann equation for a rodlike macromolecule using the pseudo-spectral method. Results in Physics 7:3938–3945

    Article  Google Scholar 

  28. Droll P, Schäfer M, Serre E, Bontoux P (2003) An implicit pseudo-spectral multi-domain method for the simulation of incompressible flows. Num Meth in Fluids 41:447–470

    Article  MathSciNet  Google Scholar 

  29. Pfeiffer HP, Kidder LE, Scheel MA, Teukolski SA (2013) A multidomain spectral method for solving elliptic equations. Computer Physics Communications 152:253–273

    Article  MathSciNet  Google Scholar 

  30. Wang Z, Huang Z, Zhang W, Xi G (2015) A Multidomain Chebyshev Pseudo-Spectral Method for Fluid Flow and Heat Transfer from Square Cylinders. Numerical Heat Transfer, Part B: Fundamentals An International Journal of Computation and Methodology 28:224–238

    Article  Google Scholar 

  31. Li D (2004) Electrokinetics in Microfluidics. In.: Interface Science and Technology Series 2. Elsevier, Amsterdam

  32. Mirbozorgi SA, Niazmand H, Renksizbulut M (2007) Streaming Electric Potential in Pressure-Driven Flows Through Reservoir-Connected Microchannels. J Fluids and Engineering 129:1346–1357

    Article  Google Scholar 

  33. Baldessari F, Santiago JG (2008) Electrokinetics in nanochannels: part I. Electric double layer overlap and channel-to-well equilibrium. J Colloid Interface Science 325:526–538

    Article  Google Scholar 

  34. Qu W, Li D (2000) A Model for Overlapped EDL. J Colloid and Interface Science 224:391–407

    Article  Google Scholar 

  35. Bernfeld SR, Lakshmikantham V (1974) An Introduction to Nonlinear Boundary Value Problems. Academic Press, New York

    MATH  Google Scholar 

  36. Protter MH, Weinberger HF (1984) Maximum Principles in Differential Equations. Springer-Verlag, New York

    Book  Google Scholar 

  37. Verschueren ARM, Notten PHL, Schlangen LJM, Strubbe F, Beunis F, Neyts K (2008) Screening and separation of charges in microscale devices: complete planar solution of the Poisson-Boltzmann equation. J Phys Chem B 112:13038–13050

    Article  Google Scholar 

  38. Peyret R (2002) Spectral Methods for Incompressible Viscous Flow. Springer, New York

    Book  Google Scholar 

  39. Björck Å (1996) Numerical methods for least squares problems. SIAM, Philadelphia

    Book  Google Scholar 

  40. Jing D, Bhushan B (2015) Electroviscous effect on fluid drag in a microchannel with large zeta potential. Beilstein Journal of Nanotechnology 6:2207–2216

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo S. Borges.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here we present without proof the maximum principle for boundary-value problems for second-order nonlinear elliptic equations as stated in [28, Theorem 22, p. 48].

Theorem 4

Let u(x) the solution of the boundary-value problem

$$\begin{aligned}&u''+H(x,u,u')=0,\quad a<x<b \end{aligned}$$
(88)
$$\begin{aligned}&u(a)=\zeta _1,\quad u(b)=\zeta _2. \end{aligned}$$
(89)

Suppose that H, \(\dfrac{\partial H}{\partial y}\), \(\dfrac{\partial H}{\partial z}\) are continuous and that \(\dfrac{\partial H}{\partial y}\le 0\). If \(z_1(x)\) satisfies

$$\begin{aligned}&z_1''+H(x,z_1,z_1')\le 0,\quad a<x<b \end{aligned}$$
(90)
$$\begin{aligned}&z_1(a)\ge \zeta _1,\quad z_1(b)\ge \gamma _2 \end{aligned}$$
(91)

and if \(z_2(x)\) satisfies

$$\begin{aligned}&z_2''+H(x,z_2,z_2')\ge 0,\quad a<x<b \end{aligned}$$
(92)
$$\begin{aligned}&z_2(a)\le \gamma _1,\quad z_2(b)\le \gamma _2, \end{aligned}$$
(93)

thus the upper and lower bounds

$$\begin{aligned} z_2(x)\le u(x)\le z_1(x) \end{aligned}$$
(94)

are valid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, L.S., Bedin, L. & Bazán, F.S.V. Multidomain Chebyshev pseudo-spectral method applied to the Poisson–Boltzmann equation for two parallel plates. J Eng Math 127, 15 (2021). https://doi.org/10.1007/s10665-021-10109-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-021-10109-3

Keywords

Navigation