Skip to main content

Advertisement

Log in

Evaluation of urban flood susceptibility through integrated Bivariate statistics and Geospatial technology

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Flood disasters are frequent natural disasters that occur annually during the monsoon season and significantly impact urban areas. This area is characterized by impermeable concrete surfaces, which increase runoff and are particularly susceptible to flooding. Therefore, this study aims to adopt Bi-variate statistical methods such as frequency ratio (FR) and weight of evidence (WOE) to map flood susceptibility in an urbanized watershed. The study area encompasses an urbanized watershed surrounding the Chennai Metropolitan area in southern India. The essential parameters considered for flood susceptibility zonation include geomorphology, soil, land use/land cover (LU/LC), rainfall, drainage, slope, aspect, Topographic Wetness Index (TWI), and Normalized Difference Vegetation Index (NDVI). The flood susceptibility map was derived using 70% of randomly selected flood areas from the flood inventory database, and the other 30% was used for validation using the area under curve (AUC) method. The AUC method produced a frequency ratio of 0.806 and a weight of evidence value of 0.865 contributing to the zonation of the three classes. The study further investigates the impact of urbanization on flood susceptibility and is further classified into high, moderate, and low flood risk zones. With the abrupt change in climatic scenarios, there is an increase in the risk of flash floods. The results of this study can be used by policymakers and planners in developing a preparedness system to mitigate economic, human, and property losses due to floods in any urbanized watershed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

The data will be made available at reasonable request.

References

  • Abbot, J., & Marohasy, J. (2014). Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks. Atmospheric Research, 138, 166–178.

    Article  Google Scholar 

  • Abijith, D., & Saravanan, S. (2022). Assessment of land use and land cover change detection and prediction using remote sensing and CA Markov in the northern coastal districts of Tamil Nadu India. Environmental Science and Pollution Research, 29(57), 86055–86067. https://doi.org/10.1007/s11356-021-15782-6

    Article  Google Scholar 

  • Abijith, D., Saravanan, S., & Sundar, P. K. S. (2023). Coastal vulnerability assessment for the coast of Tamil Nadu, India—A geospatial approach. Environmental Science and Pollution Research, 30(30), 75610–75628. https://doi.org/10.1007/s11356-023-27686-8

    Article  Google Scholar 

  • Adedeji, O. H., Olayinka, O. O., Ogundiran, T., & Tope-Ayayi, O. O. (2021). Urban flood impacts, flood water quality and risk mapping of Olodo Area, Ibadan, Nigeria. Journal of Natural Sciences Engineering and Technology, 19(1), 56–73. https://doi.org/10.51406/jnset.v19i1.2097

    Article  Google Scholar 

  • Ahmed, K. R., & Akter, S. (2017). Analysis of landcover change in southwest Bengal delta due to floods by NDVI, NDWI and K-means cluster with Landsat multi-spectral surface reflectance satellite data. Remote Sensing Applications: Society and Environment, 8, 168–181.

    Article  Google Scholar 

  • Ahmed, A., Al Maliki, A., Hashim, B., Alshamsi, D., Arman, H., & Gad, A. (2023). Flood susceptibility mapping utilizing the integration of geospatial and multivariate statistical analysis, Erbil area in Northern Iraq as a case study. Scientific Reports, 13(1), 1–13. https://doi.org/10.1038/s41598-023-39290-4

    Article  CAS  Google Scholar 

  • Al-Aizari, A. R., Al-Masnay, Y. A., Aydda, A., Zhang, J., Ullah, K., Islam, A. R. M. T., Habib, T., Kaku, D. U., Nizeyimana, J. C., Al-Shaibah, B., Khalil, Y. M., W. M. M., AL-Hameedi, X., & Liu. (2022). Assessment Analysis of flood susceptibility in tropical desert area: A case study of Yemen. Remote Sensing, 14(16), 4050. https://doi.org/10.3390/rs14164050

  • Alawadi, W. A., Raheem, Z. A. H. A., & Yaseen, D. A. (2023). Use of remote sensing techniques to assess water storage variations and flood-related inflows for the Hawizeh wetland. Environmental Monitoring and Assessment, 195(10), 1–21. https://doi.org/10.1007/s10661-023-11838-x

    Article  Google Scholar 

  • Ali, S. A., Khatun, R., Ahmad, A., & Ahmad, S. N. (2019). Application of GIS-based analytic hierarchy process and frequency ratio model to flood vulnerable mapping and risk area estimation at Sundarban region India. Modeling Earth Systems and Environment, 5(3), 1083–1102. https://doi.org/10.1007/s40808-019-00593-z

    Article  Google Scholar 

  • Bah, A., Zhang, H., Luo, Z., Hu, J., Zhang, Z., Xie, Y. L., Yang, T., Chen, G., & Bah, A. (2024). A study of land use changes and its impacts on flood inundation in the Konkoure River Basin, Republic of Guinea. Environmental Monitoring and Assessment, 196(2), 212. https://doi.org/10.1007/s10661-024-12371-1

    Article  Google Scholar 

  • Bellanthudawa, B. K. A., Nawalage, N. M. S. K., Halwatura, D., Ahmed, S. H., Kendaragama, K. M. N., & Neththipola, M. M. T. D. (2023). Biophysical and biochemical features’ feedback associated with a flood episode in a tropical river basin model. Environmental Monitoring and Assessment, 195(4), 504. https://doi.org/10.1007/s10661-023-11121-z

    Article  CAS  Google Scholar 

  • Bhuyan, N., Sajjad, H., Saha, T. K., Sharma, Y., Masroor, M., Rahaman, M. H., & Ahmed, R. (2024). Assessing landscape ecological vulnerability to riverbank erosion in the Middle Brahmaputra floodplains of Assam India using machine learning algorithms. CATENA, 234, 107581. https://doi.org/10.1016/j.catena.2023.107581

    Article  Google Scholar 

  • Bolick, M. M., Post, C. J., Naser, M. Z., Forghanparast, F., & Mikhailova, E. A. (2023). Evaluating urban stream flooding with machine learning, LiDAR, and 3D modeling. Water, 15(14), 2581. https://doi.org/10.3390/w15142581

    Article  Google Scholar 

  • Chowdhury, M. S. (2023). Modelling hydrological factors from DEM using GIS. MethodsX, 10, 102062. https://doi.org/10.1016/j.mex.2023.102062

    Article  Google Scholar 

  • Cinderby, S. (2016). Co-designing possible flooding solutions: Participatory mapping methods to identify flood management options from a UK borders case study. Journal of Geographical Information Science, 1, 149–156.

  • Das, S. (2019). Geospatial mapping of flood susceptibility and hydro-geomorphic response to the floods in Ulhas basin, India. Remote Sensing Applications: Society and Environment, 11(20), 5639.

    Google Scholar 

  • Debnath, J., Debbarma, J., Debnath, A., Meraj, G., Chand, K., Singh, S. K., Kanga, S., Kumar, P., Sahariah, D., & Saikia, A. (2024). Flood susceptibility assessment of the Agartala Urban Watershed, India, using machine learning algorithm. Environmental Monitoring and Assessment, 196(2), 1–21. https://doi.org/10.1007/s10661-023-12240-3

    Article  Google Scholar 

  • Dung, N. B., Long, N. Q., An, D. T., & Minh, D. T. (2022). Multi-geospatial flood hazard modelling for a large and complex river basin with data sparsity: A case study of the Lam River Basin Vietnam. Earth System and Environment, 6, 715–731. https://doi.org/10.1007/s41748-021-00215-8

    Article  Google Scholar 

  • Dutal, H. (2023). Using morphometric analysis for assessment of flash flood susceptibility in the Mediterranean region of Turkey. Environmental Monitoring and Assessment, 195(5), 582. https://doi.org/10.1007/s10661-023-11201-0

    Article  Google Scholar 

  • Eini, M., Kaboli, H. S., Rashidian, M., & Hedayat, H. (2020). Hazard and vulnerability in urban flood risk mapping: Machine learning techniques and considering the role of urban districts. International Journal of Disaster Risk Reduction, 50, 101687. https://doi.org/10.1016/j.ijdrr.2020.101687

    Article  Google Scholar 

  • Ercanoglu, M. (2002). Assessment of landslide susceptibility for a landslide prone area (north of Yenice, NW Turkey) by fuzzy approach. Environmental Geology, 41, 720–730.

  • Forson, E. D., Amponsah, P. O., Hagan, G. B., & Sapah, M. S. (2023). Frequency ratio-based flood vulnerability modeling over the greater Accra Region of Ghana. Modeling Earth Systems and Environment, 9(2), 2081–2100. https://doi.org/10.1007/s40808-022-01616-y

    Article  Google Scholar 

  • Gao, B.-C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266.

    Article  Google Scholar 

  • Hagos, Y. G., Andualem, T. G., Yibeltal, M., & Mengie, M. A. (2022). Flood hazard assessment and mapping using GIS integrated with multi-criteria decision analysis in upper Awash River basin Ethiopia. Applied Water Science, 12(7), 1–18. https://doi.org/10.1007/s13201-022-01674-8

    Article  Google Scholar 

  • Hammami, S., Zouhri, L., Souissi, D., Souei, A., Zghibi, A., & Marzougui, A. (2019). Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia). Arabian Journal of Geoscience, 12(21), 1–16.

  • Idrees, M. O., Yusuf, A., Mokhtar, E. S., & Yao, K. (2022). Urban flood susceptibility mapping in Ilorin, Nigeria, using GIS and multi-criteria decision analysis. Modeling Earth Systems and Environment, 8(4), 5779–5791. https://doi.org/10.1007/s40808-022-01479-3

    Article  Google Scholar 

  • Jacinth Jennifer, J., Saravanan, S., & Abijith, D. (2020). Integration of SAR and multi-spectral imagery in flood inundation mapping–A case study on Kerala floods 2018. ISH Journal of Hydraulic Engineering, 28, 1–11. https://doi.org/10.1080/09715010.2020.1791265

    Article  Google Scholar 

  • Juarez-Lucas, A. M., Kibler, K. M., Ohara, M., & S. T. (2016). Benefits of flood-prone land use and the role of coping capacity, Candaba floodplains, Philippines. Natural Hazards, 84, 2243–2264.

    Article  Google Scholar 

  • Kalidhas, M., & Sivakumar, R. (2022). Image processing and supervised classification of LANDSAT data for flood impact assessment on land use and land cover. Proceedings of International Conference on Technological Advancements in Computational Sciences, ICTACS, 2022, 437–440. https://doi.org/10.1109/ICTACS56270.2022.9988164

    Article  Google Scholar 

  • Khatun, M., Garai, S., Sharma, J., Singh, R., Tiwari, S., & Rahaman, S. M. (2022). Flood mapping and damage assessment due to the super cyclone Yaas using Google Earth Engine in Purba Medinipur, West Bengal India. Environmental Monitoring and Assessment, 194(12), 1–11. https://doi.org/10.1007/s10661-022-10574-y

    Article  Google Scholar 

  • Khosravi, K., Pourghasemi, H. R., Chapi, K., & B. M. (2016a). Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: A comparison between Shannon’s entropy, statistical index, and weighting factor models. Environmental Monitoring Assessment, 188, 1. https://doi.org/10.1007/s10661-016-5665-9

    Article  Google Scholar 

  • Khosravi, K., Nohani, E., Maroufinia, E., & Pourghasemi, H. R. (2016b). A GIS-based flood susceptibility assessment and its mapping in Iran: A comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Natural Hazards, 83(2), 947–987. https://doi.org/10.1007/s11069-016-2357-2

    Article  Google Scholar 

  • Spatio-temporal classification and prediction of land use and land cover change for the Vembanad Lake system, Kerala: A machine learning approach. (2022). Environmental Science and Pollution Research, 29(57), 86220–86236. https://doi.org/10.1007/s11356-021-17257-0

  • Sundar, P. S., & Kundapura S, S. (2023). Spatial mapping of flood susceptibility using decision tree–based machine learning models for the Vembanad Lake System in Kerala, India. Journal of Water Resources Planning and Management, 149(10), 1–21. https://doi.org/10.1061/jwrmd5.wreng-5858

    Article  Google Scholar 

  • Lahiri, N., J. M., & Nongkynrih. (2024). Flood susceptibility mapping using Sentinel 1 and frequency ratio technique in Jinjiram River watershed India. Environmental Monitoring and Assessment, 196(1), 103. https://doi.org/10.1007/s10661-023-12242-1

  • Lian, J., Yang, W., Xu, K., & Ma, C. (2017). Flash flood vulnerability assessment for small catchments with a material flow approach. Natural Hazards, 88(2), 699–719. https://doi.org/10.1007/s11069-017-2887-2

    Article  Google Scholar 

  • Lindsay, J. B., & Newman, D. R. (2019). Scale-optimized surface roughness for topographic analysis. Geoscience, 9(7), 322.

  • Majid, S. I., Kumar, M., Kumar, P., & Verma, N. K. (2023). GIS-Based flood susceptibility mapping of Srinagar District, India using weights-of-evidence (WofE), frequency ratio (FR) and fuzzy gamma operator (FGO). Journal of the Indian Society of Remote Sensing, 51(12), 2421–2446. https://doi.org/10.1007/s12524-023-01776-z

    Article  Google Scholar 

  • Mason, D. C., Bevington, J., Dance, S. L., Revilla-romero, B., Smith, R., Vetra-carvalho, S., & Cloke, H. L. (2021). Improving urban flood mapping by merging synthetic hazard maps. Water, 13, 1577.

    Article  Google Scholar 

  • Rahaman, M. H., Masroor, R. M., & Haroon, S. (2023). Integrating remote sensing derived indices and machine learning algorithms for precise extraction of small surface water bodies in the lower Thoubal river watershed India. Journal of Cleaner Production, 422, 138563. https://doi.org/10.1016/j.jclepro.2023.138563

    Article  Google Scholar 

  • Mirzaei, S., Vafakhah, M., Pradhan, B., & Alavi, S. J. (2021). Flood susceptibility assessment using extreme gradient boosting (EGB) Iran. Earth Science Informatics, 14(1), 51–67. https://doi.org/10.1007/s12145-020-00530-0

    Article  Google Scholar 

  • Musfike Meraz, M., Riad Hossain, M., Sultana, R., & Esraz-Ul-Zannat, M. (2023). Flood prediction and vulnerability assessment at the south-western region of Bangladesh. Environmental Monitoring and Assessment, 195(6). https://doi.org/10.1007/s10661-023-11418-z

  • Muthu, K., & Sudalaimuthu, K. (2021). Integration of remote sensing, GIS, and AHP in demarcating groundwater potential zones in Pattukottai Taluk, Tamilnadu India. Arabian Journal of Geosciences, 14(17), 1–18. https://doi.org/10.1007/s12517-021-08110-2

    Article  Google Scholar 

  • Natarajan, L., Usha, T., Gowrappan, M., Palpanabhan Kasthuri, B., Moorthy, P., & Chokkalingam, L. (2021). Flood susceptibility analysis in Chennai Corporation using frequency ratio model. Journal of the Indian Society of Remote Sensing, 49(7), 1533–1543. https://doi.org/10.1007/s12524-021-01331-8

    Article  Google Scholar 

  • Neshat, A., & Pradhan, B. (2015). An integrated DRASTIC model using frequency ratio and two new hybrid methods for groundwater vulnerability assessment. Natural Hazards, 76(1), 543–563. https://doi.org/10.1007/s11069-014-1503-y

    Article  Google Scholar 

  • Nguyen, H. D. (2022). GIS-based hybrid machine learning for flood susceptibility prediction in the Nhat Le–Kien Giang watershed Vietnam. Earth Science Informatics, 15(4), 2369–2386. https://doi.org/10.1007/s12145-022-00825-4

    Article  Google Scholar 

  • Norallahi, M., & Seyed Kaboli, H. (2021). Urban flood hazard mapping using machine learning models: GARP, RF MaxEnt and NB. Natural Hazards, 106(1), 119–137. https://doi.org/10.1007/s11069-020-04453-3

    Article  Google Scholar 

  • Opolot, E. (2013). Application of remote sensing and geographical information systems in flood management: A review. Research Journal of Applied Sciences Engineering and Technology, 6(10), 1884.

    Article  Google Scholar 

  • Pal, S. C., & Chowdhuri, I. (2019). GIS-based spatial prediction of landslide susceptibility using frequency ratio model of Lachung River basin, North Sikkim India. SN Applied Sciences, 1(5), 1–25. https://doi.org/10.1007/s42452-019-0422-7

    Article  Google Scholar 

  • Pathan, A. I., Girish Agnihotri, P., Said, S., & Patel, D. (2022). AHP and TOPSIS based flood risk assessment- A case study of the Navsari City, Gujarat, India. In Environmental Monitoring and Assessment (Vol. 194, Issue 7). Springer International Publishing https://doi.org/10.1007/s10661-022-10111-x

  • Pourali, S. H., Arrowsmith, C., Chrisman, N., Matkan, A. A., & Mitchell, D. (2016). Topography wetness index application in flood-risk-based land use planning. Applied Spatial Analysis and Policy, 9(1), 39–54. https://doi.org/10.1007/s12061-014-9130-2

    Article  Google Scholar 

  • Pourghasemi, H. R., Amiri, M., Edalat, M., Ahrari, A. H., Panahi, M., Sadhasivam, N., & Lee, S. (2021). Assessment of urban infrastructures exposed to flood using susceptibility map and Google Earth Engine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 1923–1937. https://doi.org/10.1109/JSTARS.2020.3045278

    Article  Google Scholar 

  • Rahman, Z. U., Ullah, W., Bai, S., Ullah, S., Jan, M. A., Khan, M., & Tayyab, M. (2023). GIS-based flood susceptibility mapping using bivariate statistical model in Swat River Basin, Eastern Hindukush region, Pakistan. Frontiers in Environmental Science, 11, 1–17. https://doi.org/10.3389/fenvs.2023.1178540

    Article  CAS  Google Scholar 

  • Rahmati, O., Pourghasemi, H. R., & Zeinivand, H. (2016a). Flood susceptibility mapping using frequency ratio and weights-ofevidence models in the Golastan Province Iran. Geocarto International, 31, 42–70. https://doi.org/10.1080/10106049.2015.1041559

    Article  Google Scholar 

  • Rahmati, O., Pourghasemi, H. R., & Zeinivand, H. (2016b). Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province Iran. Geocarto International, 31(1), 42–70. https://doi.org/10.1080/10106049.2015.1041559

    Article  Google Scholar 

  • Rehman, S., Hasan, M. S. U., Rai, A. K., Rahaman, M. H., Avtar, R., & Sajjad, H. (2022). Integrated approach for spatial flood susceptibility assessment in Bhagirathi sub-basin, India using entropy information theory and geospatial technology. Risk Analysis, 42(12), 2765–2780. https://doi.org/10.1111/risa.13887

    Article  Google Scholar 

  • Rehman, S., Rahaman, M. H., Masroor, M., Roshani, Sajjad, H., Ahmed, R., Yunus, A. P., & Sahana, M. (2023). Analyzing vulnerability of communities to flood using composite vulnerability index: Evidence from Bhagirathi Sub-basin, India. In Natural Hazards 119(3) Springer Netherlands https://doi.org/10.1007/s11069-023-06170-z

  • Saha, S., Sarkar, D., & Mondal, P. (2022). Efficiency exploration of frequency ratio, entropy and weights of evidence-information value models in flood vulnerabilityassessment: A study of raiganj subdivision, Eastern India. Stochastic Environmental Research and Risk Assessment, 36(6), 1721–1742. https://doi.org/10.1007/s00477-021-02115-9

    Article  Google Scholar 

  • Sahana, M., & Patel, P. P. (2019). A comparison of frequency ratio and fuzzy logic models for flood susceptibility assessment of the lower Kosi River Basin in India. Environmental Earth Sciences, 78(10), 1–27. https://doi.org/10.1007/s12665-019-8285-1

    Article  Google Scholar 

  • Saleh, A., Yuzir, A., & Sabtu, N. (2022). Flash flood susceptibility mapping of Sungai Pinang Catchment using frequency ratio. Sains Malaysiana, 51(1), 51–65. https://doi.org/10.17576/jsm-2022-5101-05

    Article  Google Scholar 

  • Samanta, S., Pal, D. K., & Lohar, D. (2012). Interpolation of climate variables and temperature modeling. Theoretical and Applied Climatology, 107(1), 35–45. https://doi.org/10.1007/s00704-011-0455-3

  • Samanta, S., Pal, D. K., & Palsamanta, B. (2018). Flood susceptibility analysis through remote sensing, GIS and frequency ratio model. Applied Water Science, 8(2), 1–14. https://doi.org/10.1007/s13201-018-0710-1

    Article  Google Scholar 

  • Saravanan, S., & Abijith, D. (2022). Flood susceptibility mapping of northeast coastal districts of Tamil Nadu India using multi-source geospatial data and machine learning techniques. Geocarto International, 37(27), 15252–15281. https://doi.org/10.1080/10106049.2022.2096702

    Article  Google Scholar 

  • Saravanan, S., Abijith, D., Reddy, N. M., Parthasarathy, K. S., Janardhanam, N., Sathiyamurthi, S., & Sivakumar, V. (2023). Flood susceptibility mapping using machine learning boosting algorithms techniques in Idukki district of Kerala India. Urban Climate, 49, 101503. https://doi.org/10.1016/j.uclim.2023.101503

    Article  Google Scholar 

  • Sarkar, D., & Mondal, P. (2020). Flood vulnerability mapping using frequency ratio (FR) model: A case study on Kulik river basin Indo-Bangladesh Barind Region. Applied Water Science, 10(1), 1–13. https://doi.org/10.1007/s13201-019-1102-x

    Article  CAS  Google Scholar 

  • Sezer, E. A., Pradhan, B., & Gokceoglu, C. (2011). Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang Valley Malaysia. Expert Systems with Applications, 38(7), 8208–8219.

    Article  Google Scholar 

  • Shafapour Tehrany, M., Kumar, L., Neamah Jebur, M., & Shabani, F. (2019). Evaluating the application of the statistical index method in flood susceptibility mapping and its comparison with frequency ratio and logistic regression methods. Geomatics, Natural Hazards and Risk, 10(1), 79–101. https://doi.org/10.1080/19475705.2018.1506509

    Article  Google Scholar 

  • Shafapour Tehrany, M., Shabani, F., Neamah Jebur, M., Hong, H., Chen, W., & Xie, X. (2017). GIS-based spatial prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques. Geomatics, Natural Hazards and Risk, 8(2), 1538–1561. https://doi.org/10.1080/19475705.2017.1362038

    Article  Google Scholar 

  • Siam, Z. S., Hasan, R. T., Anik, S. S., Noor, F., Adnan, M. S. G., & Rahman, R. M. (2021). Study of hybridized support vector regression based flood susceptibility mapping for Bangladesh. In Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics): Vol. 12799 LNAI. Springer International Publishing https://doi.org/10.1007/978-3-030-79463-7_6

  • Singh, S., & Kansal, M. L. (2022). Chamoli flash-flood mapping and evaluation with a supervised classifier and NDWI thresholding using Sentinel-2 optical data in Google earth engine. Earth Science Informatics, 15(2), 1073–1086. https://doi.org/10.1007/s12145-022-00786-8

    Article  Google Scholar 

  • Swain, K. C., Singha, C., & Nayak, L. (2020). Flood susceptibility mapping through the GIS-AHP technique using the cloud. ISPRS International Journal of Geo-Information, 9(12). https://doi.org/10.3390/ijgi9120720

  • Tehrany, M. S., Jones, S., & Shabani, F. (2019). Identifying the essential flood conditioning factors for flood prone area mapping using machine learning techniques. CATENA, 175, 174–192. https://doi.org/10.1016/j.catena.2018.12.011

    Article  Google Scholar 

  • Tehrany, M. S., Pradhan, B., & J. M. (2014). Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512(332), 343.

    Google Scholar 

  • Ullah, K., & Zhang, J. (2020). GIS-based flood hazard mapping using relative frequency ratio method: A case study of panjkora river basin, eastern Hindu Kush Pakistan. PLoS ONE, 15(3), 1–18. https://doi.org/10.1371/journal.pone.0229153

    Article  CAS  Google Scholar 

  • Ullah, M., Li, J., & Wadood, B. (2020). Analysis of urban expansion and its impacts on land surface temperature and vegetation using RS and GIS, a case study in Xi’an City China. Earth Systems and Environment, 4(3), 583–597. https://doi.org/10.1007/s41748-020-00166-6

    Article  Google Scholar 

  • Yalcin, A. (2008). GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. CATENA, 72, 1–12.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank SRM Institute of Science and Technology Kattankulathur for providing essential facilities and encouragement for doing the research.

Author information

Authors and Affiliations

Authors

Contributions

Kalidhas Muthu was involved in data collection and methodology, writing, and original draft preparation. Sivakumar Ramamoorthy contributed to supervision, process, report, review, editing, and resources.

Corresponding author

Correspondence to Sivakumar Ramamoorthy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthu, K., Ramamoorthy, S. Evaluation of urban flood susceptibility through integrated Bivariate statistics and Geospatial technology. Environ Monit Assess 196, 526 (2024). https://doi.org/10.1007/s10661-024-12676-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12676-1

Keywords

Navigation