Skip to main content

Advertisement

Log in

Assessment of land use and land cover change detection and prediction using deep learning techniques for the southwestern coastal region, Goa, India

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Understanding the connections between human activities and the natural environment depends heavily on information about land use and land cover (LULC) in the form of accurate LULC maps. Environmental monitoring using deep learning (DL) is rapidly growing to preserve a sustainable environment in the long term. For establishing effective policies, regulations, and implementation, DL can be a valuable tool for assessing environmental conditions and natural resources that will positively impact the ecosystem. This paper presents the assessment of land use and land cover change detection (LULCCD) and prediction using DL techniques for the southwestern coastal region, Goa, also known as the tourist destination of India. It consists of three components: (i) change detection (CD), (ii) quantification of LULC changes, and (iii) prediction. A new CD assessment framework, Spatio-Temporal Encoder-Decoder Self Attention Network (STEDSAN), is proposed for the LULCCD process. A dual branch encoder-decoder network is constructed using strided convolution with downsampling for the encoder and transpose convolution with upsampling for the decoder to assess the bitemporal images spatially. The self-attention (SA) mechanism captures the complex global spatial-temporal (ST) interactions between individual pixels over space-time to produce more distinct features. Each branch accepts the LULC map of 2 years as one of its inputs to determine binary and multiclass changes among the bitemporal images. The STEDSAN model determines the patterns, trends, and conversion from one LULC type to another for the assessment period from 2005 to 2018. The binary change maps were also compared with the existing state of the art (SOTA) CD methods, with STEDSAN having an overall accuracy of 94.93%. The prediction was made using an recurrent neural network (RNN) known as long short term memory network (LSTM) for the year 2025. Experiments were conducted to determine area-wise changes in several LULC classes, such as built-up (BU), crops (kharif crop (KC), rabi crop (RC), zaid crop (ZC), double/triple (D/T C)), current fallow (CF), plantation (PL), forests (evergreen forest (EF), deciduous forest (DF), degraded/scurb forest (D/SF) ), littoral swamp (LS), grassland (GL), wasteland (WL), waterbodies max (Wmx), and waterbodies min (Wmn). As per the analysis, over the period of 13 years, there has been a net increase in the amount of BU (1.25%), RC (1.17%), and D/TC( 2.42%) and a net decrease in DF (3.29%) and WL(1.44%) being the most dominant classes being changed. These findings will offer a thorough description of identifying trends in coastal areas that may incorporate methodological hints for future studies. This study will also promote handling the spatial and temporal complexity of remotely sensed data employed in categorizing the coastal LULC of a heterogeneous landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the National Remote Sensing Centre, ISRO, Government of India, Hyderabad, India, but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are however available from the authors upon reasonable request and with permission of the National Remote Sensing Centre, ISRO, Government of India, Hyderabad, India.

Code Availability

Not applicable

Abbreviations

AwiFs:

Advanced wide field sensor

BU:

Built-up

CA:

Cellular automata

CD:

Change detection

CF:

Current fallow

CNN:

Convolutional neural network

D/SF:

Degraded/scrub forest

D/TC:

Double/triple crop

DF:

Deciduous forest

DT:

Decision tree

DL:

Deep learning

DNN:

Deep neural network

ED-LSTM:

Encoder decoder LSTM

EF:

Evergreen forest

FN:

False negative

FP:

False positive

FCN:

Fully convolutional neural network

GA:

Genetic algorithm

GAN:

Generative adversarial networks

GIS:

Geographical information systems

GL:

Grassland

ISRO:

Indian Space Research Organization

KC:

Kharif crop

LS:

Littoral swamp

LSTM:

Long short term memory network

LULC:

Land use and land cover

LULCC:

Land use and land cover change

LULCCD:

Land use and land cover change detection

MCM:

Markov chain model

MIOU:

Mean intersection over union

ML:

Machine learning

MLP:

Multilayer perceptron

NRSC:

National Remote Sensing Centre

NDBI:

Normalized Difference Built-up Index

OA:

Overall accuracy

PA:

Producer accuracy

PCA:

Principal component analysis

PL:

Plantation

RC:

Rabi crop

ReLU:

Rectified linear unit

RF:

Random forest

RNN:

Recurrent neural network

RS:

Remote sensing

SA:

Self-attention

SITS:

Satellite image time series

SOTA:

State of the art

ST:

Spatial-temporal

STEDSAN:

Spatio-Temporal Encoder-Decoder Self Attention Network

SVM:

Support vector machine

TN:

True negative

TP:

True positive

UA:

User accuracy

WL:

Wasteland

Wmn:

Waterbodies min

Wmx:

Waterbodies max

Xgboost:

Extreme gradient boosting

ZC:

Zaid crop

References

  • Abdi, A. M. (2020). Land cover and land use classification performance of machine learning algorithms in a boreal landscape using sentinel-2 data. GIScience & Remote Sensing, 57(1), 1–20.

    Article  Google Scholar 

  • Ahmed, S.A., Shankar, B., et al. (2011). Planning for conservation of heritage areas in old Goa: Issues and strategies. IDES_CPS, Civil Engineering Series-Advances in Civil Engineering ACE, Ed., pp. 11–15.

  • Albert, A., Kaur, J., Gonzalez, M.C. (2017). Using convolutional networks and satellite imagery to identify patterns in urban environments at a large scale. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1357–1366).

  • Al-Usmani, S. M. P. (2011). Impact of mining activities on land and water areas of Goa. Journal of Coastal Environment, 2(1), 43–54.

    Google Scholar 

  • Ansari, Z., Achuthankutty, C., & Dalal, S. (2006). Overexploitation of fishry resources, with particular reference to Goa. India: TERI Press.

    Google Scholar 

  • Arsanjani, J.J., et al. (2011). Dynamic land use/cover change modelling: Geosimulation and multiagent-based modelling. Springer Science & Business Media.

  • Bai, X., Sharma, R.C., Tateishi, R., Kondoh, A., Wuliangha, B., & Tana, G. (2017). A detailed and high-resolution land use and land cover change analysis over the past 16 years in the Horqin Sandy Land, inner Mongolia. Mathematical Problems in Engineering.

  • Bandara, C. Wele Gedara, Patel, V., et al. (2022). A transformer-based Siamese network for change detection. arXiv:2201.01293.

  • Borkar, M. (2006). Sacred yet scientific; eco-theological basis of biodiversity conservation in Goa. Multiple dimensions of global environmental change, 182–194.

  • Bousias Alexakis, E., Armenakis, C., et al. (2021). Performance improvement of encoder/decoder-based CNN architectures for change detection from very high-resolution satellite imagery. Canadian Journal of Remote Sensing, 47(2), 309–336.

    Article  Google Scholar 

  • Brauwers, G., Frasincar, F., et al. (2021). A general survey on attention mechanisms in deep learning. IEEE Transactions on Knowledge and Data Engineering.

  • Briassoulis, H. (2009) Factors influencing land-use and land-cover change. Land cover, land use and the global change, encyclopaedia of life support systems (EOLSS), 1, 126–146.

  • Calderón-Loor, M., Hadjikakou, M., & Bryan, B. A. (2021). High-resolution wall-to-wall land-cover mapping and land change assessment for Australia from 1985 to 2015. Remote Sensing of Environment, 252, 112148.

    Article  Google Scholar 

  • Campos-Taberner, M., García-Haro, F. J., Martínez, B., Izquierdo-Verdiguier, E., Atzberger, C., Camps-Valls, G., & Gilabert, M. A. (2020). Understanding deep learning in land use classification based on sentinel-2 time series. Scientific Reports, 10(1), 1–12.

    Article  Google Scholar 

  • Chen, Z., Zhou, Y., Wang, B., Xu, X., He, N., Jin, S., & Jin, S. (2022). EGDE-NET: A building change detection method for high-resolution remote sensing imagery based on edge guidance and differential enhancement. ISPRS Journal of Photogrammetry and Remote Sensing, 191, 203–222.

    Article  Google Scholar 

  • Cheng, H., Wu, H., Zheng, J., Qi, K., & Liu, W. (2021). A hierarchical self-attention augmented Laplacian pyramid expanding network for change detection in high-resolution remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 182, 52–66.

    Article  Google Scholar 

  • Choudri, B., Chachadi, A., et al. (2006). Status of groundwater availability and recharge in the mining watersheds of North Goa. Multiple dimensions of global environmental change: TERI Press.

  • Commission of India, P. (2011). Goa Development Report. https://niti.gov.in/planningcommission.gov.in/docs/plans/stateplan/sdr/sdr_goa1909.pdf. Accessed 17 Oct 2022.

  • De Sousa, S. (1999). Effect of mining rejects on the nutrient chemistry of Mandovi estuary, Goa.

  • Du, B., Ru, L., Wu, C., & Zhang, L. (2019). Unsupervised deep slow feature analysis for change detection in multi-temporal remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 57(12), 9976–9992.

    Article  Google Scholar 

  • Ekim, B., Sertel, E., et al. (2021). Deep neural network ensembles for remote sensing land cover and land use classification. International Journal of Digital Earth, 1–14.

  • gee-assessment-tools (2020). Area estimation and accuracy assessment. https://area2.readthedocs.io/en/latest/background.html/. Accessed 24 Nov 2022.

  • Gharbia, R., Khalifa, N.E.M., & Hassanien, A.E. (2020). Land cover classification using deep convolutional neural networks. In: International conference on intelligent systems design and applications (pp. 911–920).

  • Girap, M. (2006). Remote sensing and application of GIS in natural resources management with reference to land-use/land-cover in the state of Goa. Multiple dimensions of global environmental change, 83.

  • Giri, C., Long, J., Abbas, S., Murali, R. M., Qamer, F. M., Pengra, B., & Thau, D. (2015). Distribution and dynamics of mangrove forests of South Asia. Journal of Environmental Management, 148, 101–111.

    Article  Google Scholar 

  • Glorot, X., Bengio, Y., et al. (2010). Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics (pp. 249–256).

  • Han, H., Yang, C., & Song, J. (2015). Scenario simulation and the prediction of land use and land cover change in Beijing China. Sustainability, 7(4), 4260–4279.

    Article  Google Scholar 

  • He, T., Wang, S., et al. (2021). Multi-spectral remote sensing land-cover classification based on deep learning methods. The Journal of Supercomputing, 77(3), 2829–2843.

    Article  Google Scholar 

  • Hochreiter, S., Schmidhuber, J., et al. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.

    Article  CAS  Google Scholar 

  • Hu, Y., Zhen, L., & Zhuang, D. (2019). Assessment of land-use and land-cover change in Guangxi China. Scientific Reports, 9(1), 1–13.

    Google Scholar 

  • ISFR (2019). India state of forest report. Ministry of Environment Forest and Climate Change Dehradun.

  • Jakati, D. M. (2021). Development of mining in Goa and its environmental impacts-a geographical perspective. PalArch’s Journal of Archaeology of Egypt/Egyptology, 18(7), 2979–2988.

    Google Scholar 

  • Jamali, A. (2021). Improving land use land cover mapping of a neural network with three optimizers of multi-verse optimizer, genetic algorithm, and derivative-free function. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 373–390.

    Article  Google Scholar 

  • Kalinicheva, E., Sublime, J., & Trocan, M. (2020). Unsupervised satellite image time series clustering using object-based approaches and 3D convolutional autoencoder. Remote Sensing, 12(11), 1816.

    Article  Google Scholar 

  • Kerins, P., Guzder-Williams, B., Mackres, E., Rashid, T., & Pietraszkiewicz, E. (2021). Mapping urban land use in India and Mexico using remote sensing and machine learning.

  • Kingma, D.P., Ba, J., et al. (2014) Adam: A method for stochastic optimization. arXiv:1412.6980.

  • Kotha, M., Kunte, P., et al. (2013). Land-cover change in Goa–An integrated RS–GIS approach.

  • Kulkarni, K., Vijaya, P., et al. (2021). NDBI based prediction of land use land cover change. Journal of the Indian Society of Remote Sensing, 49(10), 2523–2537.

    Article  Google Scholar 

  • Kunte, P. D., Jauhari, N., Mehrotra, U., Kotha, M., Hursthouse, A. S., & Gagnon, A. S. (2014). Multi-hazards coastal vulnerability assessment of Goa, India, using geospatial techniques. Ocean & Coastal Management, 95, 264–281.

    Article  Google Scholar 

  • Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., Coomes, O. T., Dirzo, R., Fischer, G., & Folke, C. (2001). The causes of land-use and land-cover change: Moving beyond the myths. Global Environmental Change, 11(4), 261–269.

    Article  Google Scholar 

  • Liang, J., Xu, J., Shen, H., & Fang, L. (2020). Land-use classification via constrained extreme learning classifier based on cascaded deep convolutional neural networks. European Journal of Remote Sensing, 53(1), 219–232.

    Article  Google Scholar 

  • Liu, R., Cheng, Z., Zhang, L., & Li, J. (2019). Remote sensing image change detection based on information transmission and attention mechanism. IEEE Access, 7, 156349–156359.

    Article  Google Scholar 

  • Lv, Z., Liu, T., Benediktsson, J. A., & Falco, N. (2021). Land cover change detection techniques: Very-high-resolution optical images: A review. IEEE Geoscience and Remote Sensing Magazine, 10(1), 44–63.

    Article  Google Scholar 

  • Lyu, H., Lu, H., & Mou, L. (2016). Learning a transferable change rule from a recurrent neural network for land cover change detection. Remote Sensing, 8(6), 506.

    Article  Google Scholar 

  • Mahender, K., Kunte, P., et al. (2013). Land cover change in Goa: An integrated RS-GIS approach.

  • Mascarenhas, A. (1999). The coastal regulation zone of Goa: Oceanographic, environmental and societal perspectives. Current Science, 77(12), 1598–1605.

    Google Scholar 

  • Mascarenhas, A. (2009). Some implications of coastal regulation zone (CRZ) legislation for the coast of Goa. Geological Society of Goa, Dhempe College, Miramar, Goa (India).

  • Misra, A., Vethamony, P., et al. (2015). Assessment of the land use/land cover (LU/LC) and mangrove changes along the Mandovi-Zuari estuarine complex of Goa, India. Arabian Journal of Geosciences, 8(1), 267–279.

    Article  Google Scholar 

  • Mnih, V., Heess, N., Graves, A., et al. (2014). Recurrent models of visual attention. Advances in neural information processing systems.

  • Mou, L., Bruzzone, L., & Zhu, X. X. (2018). Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 57(2), 924–935.

    Article  Google Scholar 

  • Murali, R.M., Vethamony, P., Saran, A., & Jayakumar, S. (2006). Change detection studies in coastal zone features of Goa, India by remote sensing. Current Science, 816–820.

  • Nagi, H.M., Rodrigues, R.S., ManiMurali, R., & Jagtap, T. (2014). Using remote sensing and GIS techniques for detecting land cover changes of mangrove habitats in Goa, India.

  • Nandargi, S., Mulye, S., et al. (2014). Spatio-temporal rainfall variability and rainstorm analysis over the Goa state, India. Studies in Atmospheric Science, 1, 8–23.

    Google Scholar 

  • Ngoy, K. I., Qi, F., & Shebitz, D. J. (2021). Analyzing and predicting land use and land cover changes in New Jersey using multi-layer perceptron-Markov chain model. Earth, 2(4), 845–870.

    Article  Google Scholar 

  • Noronha, L., Siqueira, A., Sreekesh, S., Qureshy, L., & Kazi, S. (2002). Goa: Tourism, migrations, and ecosystem transformations. AMBIO: A Journal of the Human Environment, 31(4), 295–302.

    Article  Google Scholar 

  • NRSC, H. (2010). National land use and land cover mapping using multi-temporal AWiFS data. https://bhuvan-app1.nrsc.gov.in/2dresources/thematic/LULC250/0809.pdf. Accessed 14 Dec 2022.

  • Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., & Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42–57.

    Article  Google Scholar 

  • Panandiker, A.P., de Mello, L., Kotha, M., & Chachadi, A. (2021). Examining the temporal change in land cover/land use in five watersheds in Goa, India using a geospatial approach. In: Re-envisioning remote sensing applications (pp. 193–208). CRC Press.

  • Pandey, P. C., Koutsias, N., Petropoulos, G. P., Srivastava, P. K., & Ben Dor, E. (2021). Land use/land cover in view of earth observation: Data sources, input dimensions, and classifiers-a review of the state of the art. Geocarto International, 36(9), 957–988.

    Article  Google Scholar 

  • Panuju, D. R., Paull, D. J., & Griffin, A. L. (2020). Change detection techniques based on multispectral images for investigating land cover dynamics. Remote Sensing, 12(11), 1781.

    Article  Google Scholar 

  • Pati, C., Panda, A. K., Tripathy, A. K., Pradhan, S. K., & Patnaik, S. (2020). A novel hybrid machine learning approach for change detection in remote sensing images. Engineering Science and Technology, an International Journal, 23(5), 973–981.

    Article  Google Scholar 

  • Pednekar, S.M., Prabhu Matondkar, S., & Kerkar, V. (2012). Spatiotemporal distribution of harmful algal flora in the tropical estuarine complex of Goa, India. The Scientific World Journal, 2012.

  • Peng, D., Bruzzone, L., Zhang, Y., Guan, H., Ding, H., & Huang, X. (2020). SemiCDNet: A semisupervised convolutional neural network for change detection in high resolution remote-sensing images. IEEE Transactions on Geoscience and Remote Sensing.

  • Peng, D., Bruzzone, L., Zhang, Y., Guan, H., & He, P. (2021). SCDNET: A novel convolutional network for semantic change detection in high resolution optical remote sensing imagery. International Journal of Applied Earth Observation and Geoinformation, 103, 102465.

    Article  Google Scholar 

  • Rajesh, S., Nisia, T. G., Arivazhagan, S., & Abisekaraj, R. (2020). Land cover/land use mapping of LISS IV imagery using object-based convolutional neural network with deep features. Journal of the Indian Society of Remote Sensing, 48(1), 145–154.

    Article  Google Scholar 

  • Ramachandran, P., Parmar, N., Vaswani, A., Bello, I., Levskaya, A., & Shlens, J. (2019). Stand-alone self-attention in vision models. arXiv:1906.05909.

  • Ranjan, R. (2018). The role of political-industry nexus in promoting illegal extraction of mineral resources and deforestation: A case of iron ore mining in Goa. Resources Policy, 57, 122–136.

    Article  Google Scholar 

  • Riebsame, W., Meyer, W., & Turner, B. (1994). Modeling land use and cover as part of global environmental change. Climatic Change, 28(1–2), 45–64.

    Article  Google Scholar 

  • Rousset, G., Despinoy, M., Schindler, K., & Mangeas, M. (2021). Assessment of deep learning techniques for land use land cover classification in southern new Caledonia. Remote Sensing, 13(12), 2257.

    Article  Google Scholar 

  • Roy, A., Srivastava, V., et al. (2012). Geospatial approach to identification of potential hotspots of land-use and land-cover change for biodiversity conservation. Current Science, 1174–1180.

  • Roy, P., Giriraj, A., et al. (2008). Land use and land cover analysis in Indian context. Journal of Applied Sciences, 8(8), 1346–1353.

    Article  Google Scholar 

  • Rußwurm, M., Körner, M., et al. (2017). Multi-temporal land cover classification with long short-term memory neural networks. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42.

  • Samanta, S., Kunte, P.D., & Mahender, K. (2012). Coastal geomorphology and land use changes along coastal parts of Goa: An RS-GIS approach.

  • Sampath Kumar, P., Mahtab, A., Roy, A., Srivastava, V., Roy, P., & Isro, D. (2014). Impact of drivers on the land use/land cover change in Goa, India. In: Proceedings of the international symposium, India geospatial forum, hyderabad, India (pp. 5–7).

  • Santos, L. A., Ferreira, K., Picoli, M., Camara, G., Zurita-Milla, R., & Augustijn, E.-W. (2021). Identifying spatiotemporal patterns in land use and cover samples from satellite image time series. Remote Sensing, 13(5), 974.

    Article  Google Scholar 

  • Sarupria, M., Manjare, S. D., & Girap, M. (2019). Environmental impact assessment studies for mining area in Goa, India, using the new approach. Environmental Monitoring and Assessment, 191(1), 1–17.

    Article  Google Scholar 

  • Sefrin, O., Riese, F. M., & Keller, S. (2021). Deep learning for land cover change detection. Remote Sensing, 13(1), 78.

    Article  Google Scholar 

  • Series, I.R.S.S. (2013). National natural resources management system.

  • Shi, W., Zhang, M., Zhang, R., Chen, S., & Zhan, Z. (2020). Change detection based on artificial intelligence: State-of-the-art and challenges. Remote Sensing, 12(10), 1688.

    Article  Google Scholar 

  • Shirin, C., Yogita, M., & Anuradha, J. (2006). Depletion of fresh water in the mining regions of Goa, India: Gendered impacts and responses. Multiple dimensions of global environmental change, 44.

  • Sibanda, S., Ahmed, F., et al. (2021). Modelling historic and future land use/land cover changes and their impact on wetland area in Shashe sub-catchment, Zimbabwe. Modeling Earth Systems and Environment, 7(1), 57–70.

    Article  Google Scholar 

  • Silva, S. D., Nielsen, K. B., & Bedi, H. P. (2020). Land use planning, dispossession and contestation in Goa, India. The Journal of Peasant Studies, 47(6), 1301–1326.

    Article  Google Scholar 

  • Singh, G., Kamal, R. K., et al. (2015). Assessment of groundwater quality in the mining areas of Goa, India. Indian Journal of Science and Technology, 8(6), 588.

    Article  Google Scholar 

  • Singh, I., Singh, S., Kushwaha, S., Ashutosh, S., & Singh, R. (2004). Assessment and monitoring of estuarine mangrove forests of Goa using satellite remote sensing. Journal of the Indian Society of Remote Sensing, 32(2), 167–174.

    Article  Google Scholar 

  • Sonak, S., Kazi, S., Sonak, M., & Abraham, M. (2006). Factors affecting land-use and land-cover changes in the coastal wetlands of Goa. Citeseer.

  • State biodiversity board, G. (2019). State action plan on climate change for the state of Goa. https://gsbb.goa.gov.in/wp-content/uploads/2020/12/Draft-Goa%20SAPCC-for-public-inputs.pdf. Accessed 09 Jan 2023.

  • Town, Country Planning, G.o.G. (2011). Regional plan Goa 2021. https://tcp.goa.gov.in/land-use-plan-regional-plan-for-goa-2021/. Accessed 27 Dec 2022.

  • Turner, B.L., Clark, W.C., Kates, R.W., Richards, J.F., Mathews, J.T., & Meyer, W.B. (1993). The earth as transformed by human action: Global and regional changes in the biosphere over the past 300 years. Cambridge University Press.

  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.

  • Vaz, E., Taubenböck, H., Kotha, M., & Arsanjani, J. J. (2017). Urban change in Goa, India. Habitat International, 68, 24–29.

    Article  Google Scholar 

  • Verma, D., Jana, A., et al. (2019). LULC classification methodology based on simple convolutional neural network to map complex urban forms at finer scale: Evidence from Mumbai. arXiv:1909.09774.

  • Wang, D., Chen, X., Jiang, M., Du, S., Xu, B., & Wang, J. (2021). ADS-NET: An attention-based deeply supervised network for remote sensing image change detection. International Journal of Applied Earth Observation and Geoinformation, 101, 102348.

    Article  Google Scholar 

  • Wang, X., Girshick, R., Gupta, A., & He, K. (2018). Non-local neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7794–7803).

  • Wilson, D. (1997). Paradoxes of tourism in Goa. Annals of Tourism Research, 24(1), 52–75.

    Article  Google Scholar 

  • Yang, X. (2020). An overview of the attention mechanisms in computer vision. In: Journal of physics: Conference series (vol. 1693, pp 012173).

  • Yedage, A., Harmalkar, S., et al. (2017). S. analysis and simulation of land use/land cover change in the Quepem Tehsil Goa, India. Journal of Advances in Remote Sensing and GIS, 5(1), 67–76.

    Google Scholar 

  • Yedage, A., Sawant, N., & Malave, V. (2015). Change detection analysis using geo-spatial technique: A case study of south Goa. Studies, 10, 11.

    Google Scholar 

  • You, Y., Cao, J., & Zhou, W. (2020). A survey of change detection methods based on remote sensing images for multi-source and multi-objective scenarios. Remote Sensing, 12(15), 2460.

    Article  Google Scholar 

  • Zhang, C., Yue, P., Tapete, D., Jiang, L., Shangguan, B., Huang, L., & Liu, G. (2020). A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 166, 183–200.

    Article  Google Scholar 

  • Zheng, Z., Zhong, Y., Tian, S., Ma, A., & Zhang, L. (2022). ChangeMask: Deep multi-task encoder-transformer-decoder architecture for semantic change detection. ISPRS Journal of Photogrammetry and Remote Sensing, 183, 228–239.

  • Zhu, Q., Guo, X., Deng, W., Guan, Q., Zhong, Y., Zhang, L., & Li, D. (2022). Land-use/land-cover change detection based on a Siamese global learning framework for high spatial resolution remote sensing imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 184, 63–78.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Remote Sensing Centre, Indian Space Research Organization (ISRO), Government of India, Hyderabad, India, for providing time series data in form of LULC maps from 2005–06 to 2017–18 for the Goa Region.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Nitesh Naik, Kandasamy Chandrasekaran, Meenakshi Venkatesan Sundaram, and Prabhavathy Panneer. The first draft of the manuscript was written by Nitesh Naik, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nitesh Naik.

Ethics declarations

Ethical approval

Not applicable

Consent to participate

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, N., Chandrasekaran, K., Meenakshi Sundaram, V. et al. Assessment of land use and land cover change detection and prediction using deep learning techniques for the southwestern coastal region, Goa, India. Environ Monit Assess 196, 527 (2024). https://doi.org/10.1007/s10661-024-12598-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12598-y

Keywords

Navigation