Skip to main content
Log in

Assessment of potential contamination and acid drainage generation in uranium mining zones of Peña Blanca, Chihuahua, Mexico

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Potential pollution of mining environmental liabilities’ locations can be preliminarily and efficiently assessed by the potential generation of acid mine drainage and indices of contamination. This research evaluates the potential pollution by potentially toxic elements at locations with uranium mining liability evidence, using the net acid generation test and determining the background values to estimate acid mine drainage and indices of contamination. Sixty soil samples were collected, and the mineralogy and potentially toxic elements’ total contents were determined by x-ray diffraction and optical spectrometry. The findings suggest that the soils related to a specific lithology might not present potential acid mine drainage generation but potential soil and sediment contamination. Future research is recommended on applying leaching tests to identify which potentially toxic elements are effectively being solubilized. Finally, it can be concluded that the study area’s potential contamination is relatively low overall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

AMD:

Acid mine drainage

ANC:

Acid-neutralizing capacity

IC:

Indices of contamination

MEL:

Mining environmental liabilities

MPA:

Maximum potential acidity

NAF:

Non-acid forming

NAG:

Net acid generation

NAPP:

Net acid–producing potential

PAF:

Potentially acid forming

PAF-LC:

Potentially acid forming-lower capacity

PTE:

Potentially toxic elements

References

  • Adabanija, M. A., & Oladunjoye, M. A. (2014). Geoenvironmental assessment of abandoned mines and quarries in South-western Nigeria. Journal of Geochemical Exploration, 145, 148–168. https://doi.org/10.1016/J.GEXPLO.2014.06.003

    Article  CAS  Google Scholar 

  • Alba, L. A., & Chavez, R. (1974). K-Ar ages of volcanic rocks from the central Sierra Peña Blanca, Chihuahua, Mexico. Isochron/West, 10, 21–23.

    CAS  Google Scholar 

  • Alberruche del Campo, Arranz-González, J., Rodríguez-Gómez, V., Vadillo, L., Rodríguez, V., & Fernández, F. (2014). Manual para la evaluación de riesgos de instalaciones de residuos de industrias extractivas cerradas o abandonadas (First.). Ministerio de Agricultura, Alimentación y Medio Ambiente España, Instituto Geológico y Minero de España. Retrieved January 17, 2022. http://igmepublicaciones.blogspot.com/2015/05/medio-ambiente-fs.html

  • AMIRA International. (2002). ARD Test Handbook: Prediction & Kinetic Control of Acid Mine Drainage. Melbourne, Australia. http://www.amira.com.au/documents/downloads/P387AProtocolBooklet.pdf%0A%0A

  • Ardau, C., Blowes, D. W., & Ptacek, C. J. (2009). Comparison of laboratory testing protocols to field observations of the weathering of sulfide-bearing mine tailings. Journal of Geochemical Exploration, 100(2–3), 182–191. https://doi.org/10.1016/j.gexplo.2008.06.005

    Article  CAS  Google Scholar 

  • Arranz-González, J., Rodríguez-Gómez, V., Rodríguez-Pacheco, R., Fernández-Naranjo, F. J., Vadillo-Fernández, L., & Alberruche del Campo, E. (2019). Guía para la rehabilitación de instalaciones abandonadas de residuos mineros. Madrid, Spain.: Ministerio para la Transición Ecológica. Retrieved January 17, 2022. https://www.miteco.gob.es/en/calidad-y-evaluacion-ambiental/publicaciones/guiarehabilitacioninstalacionesresiduosminerosabandonadas2019_tcm38-496582.pdf

  • Arranz-González, J. C., Rodríguez-Gómez, V., Del Campo, E. A., Vadillo-Fernández, L., Fernández-Naranjo, F. J., Reyes-Andrés, J., & Rodríguez–Pacheco, R. (2016). A methodology for ranking potential pollution caused by abandoned mining wastes: Application to sulfide mine tailings in Mazarrón (Southeast Spain). Environmental Earth Sciences, 75(8), 1–10. https://doi.org/10.1007/s12665-016-5495-7

    Article  CAS  Google Scholar 

  • Arranz-González, J. C., Rodríguez-Gómez, V., Fernández-Naranjo, F. J., & Vadillo-Fernández, L. (2020). Assessment of the pollution potential of a special case of abandoned sulfide tailings impoundment in Riotinto mining district (SW Spain). Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-11473-w

    Article  Google Scholar 

  • Arranz-González, Vadillo-Fernández, L., Alberruche del Campo, E., Rodríguez-Gómez, V., Fernández-Naranjo, F. J., & Rodríguez-Pacheco, R. (2017). Metodología para clasificar la contaminación potencial causada por residuos mineros abandonados. Aplicación a los residuos mineros del Distrito Linares-La Carolina. In CSCIME (Ed.), XI Congreso Ibérico de Geoquímica (pp. 280–285). Linares, Jaén: Consejo Superior de Colegios de Ingenieros de Minas de España.

  • ASTM-E11-95. (2001). Standard specification for wire cloth and sieves for testing purposes West Conshohocken, PA: ASTM International.https://doi.org/10.1520/E0011-95

  • Baek, I., Kim, J., Song, Y., & Kim, T. (2021). Neutralization effect of slag on the acid rock drainage. International Journal of Geo-Engineering, 12(1), 0–4. https://doi.org/10.1186/s40703-020-00131-2

  • Blowes, D. W., Ptacek, C. J., Jambor, J. L., & Weisener, C. G. (2003). The geochemistry of acid mine drainage. In H. D. Holland & K. K. B. T.-T. on G. Turekian (Eds.), Treatise on Geochemistry (pp. 149–204). Oxford: Elsevier. https://doi.org/10.1016/B0-08-043751-6/09137-4

  • Bobos, I., Durães, N., & Noronha, F. (2006). Mineralogy and geochemistry of mill tailings impoundments from Algares (Aljustrel), Portugal: Implications for acid sulfate mine waters formation. Journal of Geochemical Exploration, 88(1–3), 1–5. https://doi.org/10.1016/j.gexplo.2005.08.004

    Article  CAS  Google Scholar 

  • Brough, C. P., Warrender, R., Bowell, R. J., Barnes, A., & Parbhakar-Fox, A. (2013). The process mineralogy of mine wastes. Minerals Engineering, 52, 125–135. https://doi.org/10.1016/j.mineng.2013.05.003

    Article  CAS  Google Scholar 

  • Burrows, R. H. (1910). Geology of Northern Mexico. Boletín de la Sociedad Geológica Mexicana, 7(1), 85–103. Retrieved January 17, 2022. http://boletinsgm.igeolcu.unam.mx/bsgm/index.php/volumenes-volumes/primera-epoca/79-volumen-7-numero-1-1910

  • CCME. (2018). Canadian soil quality guidelines for the protection of environmental and human health. Canadian environmental quality guidelines. Winnipeg, MB.: Canadian Council of Ministers of the Environment.

  • CEPA. (1998). Abandonded mine lands preliminary assessment handbook. Sacramento, California: California Environmental Protection Agency-Department of Toxic Substances Control. Retrieved January 17, 2022. https://semspub.epa.gov/work/01/28632.pdf

  • De Caritat, P., Reimann, C., Bastrakov, E., Bowbridge, D., Boyle, P., Briggs, S., et al. (2012). Comparing results from two continental geochemical surveys to world soil composition and deriving Predicted Empirical Global Soil (PEGS2) reference values. Earth and Planetary Science Letters, 319–320, 269–276. https://doi.org/10.1016/j.epsl.2011.12.033

    Article  CAS  Google Scholar 

  • Del Rio-Salas, R., Ayala-Ramírez, Y., Loredo-Portales, R., Romero, F., Molina-Freaner, F., Minjarez-Osorio, C., et al. (2019). Mineralogy and geochemistry of rural road dust and nearby mine tailings: A case of ignored pollution hazard from an abandoned mining site in semi-arid zone. Natural Resources Research, 28(4). https://doi.org/10.1007/s11053-019-09472-x

  • Denton, J. S., Goldstein, S. J., Paviet, P., Nunn, A. J., Amato, R. S., & Hinrichs, K. A. (2016). A record of uranium-series transport at Nopal I, Sierra Peña Blanca, Mexico: Implications for natural uranium deposits and radioactive waste repositories. Chemical Geology, 434, 12–27. https://doi.org/10.1016/j.chemgeo.2016.03.034

    Article  CAS  Google Scholar 

  • DOF. (2008). Título de Asignación Minera del lote Peña Blanca I.- Exp. Núm. 016/34858. Mexico City: Diario Oficial de la Federación México. Retrieved January 17, 2022. http://dof.gob.mx/nota_detalle.php?codigo=5037137&fecha=08/05/2008

  • DOF. (2016). Soil Sampling for metals and metalloids identification and quantification and sample handling. NMX-AA-132-SCFI-2016. Mexico City: Secretaría de Economía-Diario Oficial de la Federación de México.

  • Dold, B. (2017). Acid rock drainage prediction: A critical review. Journal of Geochemical Exploration, 172, 120–132. https://doi.org/10.1016/j.gexplo.2016.09.014

    Article  CAS  Google Scholar 

  • Escareño-Juárez, E., Pardo, R., Gascó-Leonarte, C., Vega, M., Sánchez-Báscones, M. I., & Barrado-Olmedo, A. I. (2019). Determination of natural uranium by various analytical techniques in soils of Zacatecas State (Mexico). Journal of Radioanalytical and Nuclear Chemistry, 319(3), 1135–1144. https://doi.org/10.1007/s10967-019-06428-6

    Article  CAS  Google Scholar 

  • Fayek, M., Ren, M., Goodell, P., Dobson, P., Saucedo, A., Kelts, A., et al. (2006). Paragenesis and Geochronology of the Nopal I Uranium Deposit, Mexico. 11th International High-Level Radioactive Waste Management Conference (pp. 55–62). American Nuclear Society.

    Google Scholar 

  • Fernández-Naranjo, F. J., Arranz-González, J. C., Rodríguez-Gómez, V., Rodríguez-Pacheco, R. L., & Vadillo, L. (2020). Geochemical anomalies for the determination of surface stream sediments pollution: Case of Sierra de Cartagena-La Unión mining district, Spain. Environmental Monitoring and Assessment, 192(4). https://doi.org/10.1007/s10661-020-8199-0

  • GEOCA. (1970). Estudio geológico-radiométrico detallado de las anomalías Corrales 1, Corrales 2 y Boquillas 1, porción central de la Sierra Peña Blanca, municipio de Aldama, Estado de Chihuahua. Mexico City: Geólogos y Civiles Asociados S.A.

  • Gitari, M. W., Akinyemi, S. A., Ramugondo, L., Matidza, M., & Mhlongo, S. E. (2018). Geochemical fractionation of metals and metalloids in tailings and appraisal of environmental pollution in the abandoned Musina Copper Mine. South Africa. Environmental Geochemistry and Health, 40(6), 2421–2439. https://doi.org/10.1007/s10653-018-0109-9

    Article  CAS  Google Scholar 

  • Gómez, P., Garralón, A., Buil, B., Turrero, M. J., Sánchez, L., & de la Cruz, B. (2006). Modeling of geochemical processes related to uranium mobilization in the groundwater of a uranium mine. Science of the Total Environment, 366(1), 295–309. https://doi.org/10.1016/j.scitotenv.2005.06.024

    Article  CAS  Google Scholar 

  • Goodell, P. (1981). Geology of the Peña Blanca uranium deposits, Chihuahua, Mexico. In P. Goodell & A. C. Waters (Eds.), Uranium in volcanic and volcaniclastic rocks (pp. 275–291). El Paso, Texas: The American Association of Petroleum Geologists.

  • Gray, N. F. (1997). Environmental impact and remediation of acid mine drainage: A management problem. Environmental Geology, 30(1–2), 62–71. https://doi.org/10.1007/s002540050133

    Article  CAS  Google Scholar 

  • Guzmán-Martínez, F. (2017). Evaluación de impacto ambiental de las actividades mineras. Geomimet (Vol. XLIV).

  • Guzmán-Martínez, F., Arranz-González, J. C., & García-Martínez, M.-J. (2019). Evaluación geoquímico-ambiental de pasivos de minería de uranio en Peña Blanca, México. In P. Nogueira, N. Moreira, J. Roseiro, & M. Maia (Eds.), XII Congresso Ibérico de Geoquímica - XX Semana de Geoquímica (Vol. I, pp. 383–386). Universidade de Évora.

    Google Scholar 

  • Guzmán-Martínez, F., Arranz-González, J. C., García-Martínez, M. J., Ortega, M. F., Rodríguez-Gómez, V., & Jiménez-Oyola, S. (2022). Comparative assessment of leaching tests according to lixiviation and geochemical behavior of potentially toxic elements from abandoned mining wastes. Mine Water and the Environment, 41(1), 265–279. https://doi.org/10.1007/s10230-021-00800-3

    Article  CAS  Google Scholar 

  • Guzmán-Martínez, F., Arranz-González, J. C., Ortega, M. F., García-Martínez, M. J., & Rodríguez-Gómez, V. (2020). A new ranking scale for assessing leaching potential pollution from abandoned mining wastes based on the Mexican official leaching test. Journal of Environmental Management, 273(July), 111139. https://doi.org/10.1016/j.jenvman.2020.111139

  • Jamieson, H. E. (2011). Geochemistry and mineralogy of solid mine waste: Essential knowledge for predicting environmental impact. Elements, 7(6), 381–386. https://doi.org/10.2113/gselements.7.6.381

    Article  CAS  Google Scholar 

  • Jamieson, H. E., Walker, S. R., & Parsons, M. B. (2015). Mineralogical characterization of mine waste. Applied Geochemistry, 57, 85–105. https://doi.org/10.1016/j.apgeochem.2014.12.014

    Article  CAS  Google Scholar 

  • Ji, K., Kim, J., Lee, M., Park, S., Kwon, H. J., Cheong, H. K., et al. (2013). Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea. Environmental Pollution, 178, 322–328. https://doi.org/10.1016/j.envpol.2013.03.031

    Article  CAS  Google Scholar 

  • Jiménez-Oyola, S., Chavez, E., García-Martínez, M.-J., Ortega, M. F., Bolonio, D., Guzmán-Martínez, F., et al. (2021). Probabilistic multi-pathway human health risk assessment due to heavy metal(loid)s in a traditional gold mining area in Ecuador. Ecotoxicology and Environmental Safety, 224, 112629. https://doi.org/10.1016/j.ecoenv.2021.112629

  • Jiménez-Oyola, S., García-Martínez, M.-J., Ortega, M. F., Bolonio, D., Rodríguez, C., Esbrí, J., et al. (2020). Multi-pathway human exposure risk assessment using Bayesian modeling at the historically largest mercury mining district. Ecotoxicology and Environmental Safety, 201(March), 110833. https://doi.org/10.1016/j.ecoenv.2020.110833

  • Johnson, D. B., & Hallberg, K. B. (2005). Acid mine drainage remediation options: A review. Science of the Total Environment, 338(1–2 SPEC. ISS.), 3–14. https://doi.org/10.1016/j.scitotenv.2004.09.002

  • Kalin, M., Fyson, A., & Wheeler, W. N. (2006). The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage. Science of the Total Environment, 366(2–3), 395–408. https://doi.org/10.1016/j.scitotenv.2005.11.015

    Article  CAS  Google Scholar 

  • Karlsson, T., Räisänen, M. L., Lehtonen, M., & Alakangas, L. (2018). Comparison of static and mineralogical ARD prediction methods in the Nordic environment. Environmental Monitoring and Assessment, 190(12). https://doi.org/10.1007/s10661-018-7096-2

  • Khoeurn, K., Sasaki, A., Tomiyama, S., & Igarashi, T. (2019). Distribution of zinc, copper, and iron in the tailings dam of an abandoned mine in Shimokawa, Hokkaido, Japan. Mine Water and the Environment, 38(1), 119–129. https://doi.org/10.1007/s10230-018-0566-5

    Article  CAS  Google Scholar 

  • Kowalska, J., Mazurek, R., Gąsiorek, M., Setlak, M., Zaleski, T., & Waroszewski, J. (2016). Soil pollution indices conditioned by medieval metallurgical activity – A case study from Krakow (Poland). Environmental Pollution, 218, 1023–1036. https://doi.org/10.1016/j.envpol.2016.08.053

    Article  CAS  Google Scholar 

  • Kowalska, J., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environmental Geochemistry and Health, 40(6), 2395–2420. https://doi.org/10.1007/s10653-018-0106-z

    Article  CAS  Google Scholar 

  • Lawrence, R. W., & Scheske, M. (1997). A method to calculate the neutralization potential of mining wastes. Environmental Geology, 32(2), 100–106. https://doi.org/10.1007/s002540050198

    Article  CAS  Google Scholar 

  • Meier, A. L., Grimes, D. J., & Ficklin, W. H. (1994). Inductively coupled plasma–Atomic Emission Spectroscopy: A powerful tool for mineral resource and environmental studies.

  • Modabberi, S. (2018). Mineralogical and geochemical characterization of mining wastes: Remining potential and environmental implications, Muteh Gold Deposit, Iran. Environmental Monitoring and Assessment, 190(12). https://doi.org/10.1007/s10661-018-7103-7

  • Moore, D. M. (1997). X-Ray diffraction and the identification and analysis of clay minerals (2nd ed.). Oxford; New York: Oxford University Press.

  • Morin, K., & Hutt, N. M. (2001). Environmental geochemistry of minesite drainage: Practical theory and case studies. (MDAG Publisher, Ed.). MDAG Publishing Vancouver, British Columbia, Canada. Retrieved January 17, 2022. http://www.mdag.com/book.html

  • Mücke, A., & Cabral, A. (2005). Redox and nonredox reactions of magnetite and hematite in rocks. Geochemistry, 65(3), 271–278. https://doi.org/10.1016/j.chemer.2005.01.002

    Article  CAS  Google Scholar 

  • Noble, T., & Lottermoser, B. (2017). Modified Abrasion pH and NAGpH Testing of Minerals. In B. Lottermoser (Ed.), Environmental Indicators in Metal Mining (First., pp. 211–220). Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-42731-7

  • Otake, T., Wesolowski, D. J., Anovitz, L. M., Allard, L. F., & Ohmoto, H. (2007). Experimental evidence for non-redox transformations between magnetite and hematite under H2-rich hydrothermal conditions. Earth and Planetary Science Letters, 257(1–2), 60–70. https://doi.org/10.1016/j.epsl.2007.02.022

    Article  CAS  Google Scholar 

  • Paktunc, A. D. (1999). Discussion of “A method to calculate the neutralization potential of mining wastes” by Lawrence and Scheske. Environmental Geology, 38(1), 82–84. https://doi.org/10.1007/s002540050404

    Article  CAS  Google Scholar 

  • Peña-Ortega, M., Del Rio-Salas, R., Valencia-Sauceda, J., Mendívil-Quijada, H., Minjarez-Osorio, C., Molina-Freaner, F., et al. (2019). Environmental assessment and historic erosion calculation of abandoned mine tailings from a semi-arid zone of northwestern Mexico: insights from geochemistry and unmanned aerial vehicles. Environmental Science and Pollution Research, 26203–26215. https://doi.org/10.1007/s11356-019-05849-w

  • Plante, B., Bussière, B., & Benzaazoua, M. (2012). Static tests response on 5 Canadian hard rock mine tailings with low net acid-generating potentials. Journal of Geochemical Exploration, 114, 57–69. https://doi.org/10.1016/j.gexplo.2011.12.003

    Article  CAS  Google Scholar 

  • Price, W. (2009). Prediction manual for drainage chemistry from sulphidic geologic materials. MEND Report (Vol. 1). British Columbia. Retrieved January 17, 2022. http://mend-nedem.org/wp-content/uploads/1.20.1_PredictionManual.pdf

  • Romero, R., Taboada, T., García, C., & Macías, F. (1987). Abrasion pH use as an index ofweathering and pedogenesis degree in granitic soils of A Coruña (Spain). Cadernos do Laboratorio Xeolóxico de Laxe, 11, 171–182. https://ruc.udc.es/dspace/handle/2183/5983

  • SEMARNAT. (2004). Norma Oficial Mexicana NOM-147-SEMARNAT/SSA1–2004, Que establece criterios para determinar las concentraciones de remediación de suelos contaminados por arsénico, bario, berilio, cadmio, cromo hexavalente, mercurio, níquel, plata, plomo, selenio, talio y/. Secretaria De Medio Ambiente Y Recursos Naturales. Mexico City: Diario Oficial de la Federación México. Retrieved January 17, 2022. http://www2.inecc.gob.mx/publicaciones/libros/402/cuencas.html

  • SEMARNAT. (2010). Norma Oficial Mexicana NOM-155-SEMARNAT-2007, Que establece los requisitos de protección ambiental para los sistemas de lixiviación de minerales de oro y plata. Secretaria De Medio Ambiente Y Recursos Naturales. Mexico City: Diario Oficial de la Federación México. Retrieved January 17, 2022. http://www.profepa.gob.mx/innovaportal/file/6665/1/nom-157-semarnat-2009.pdf

  • SEMARNAT. (2011). Norma Oficial Mexicana NOM-157-SEMARNAT-2009, Que establece los elementos y procedimientos para instrumentar planes de manejo de residuos mineros. Secretaria De Medio Ambiente Y Recursos Naturales. Mexico City: Diario Oficial de la Federación México. Retrieved January 17, 2022. http://www.dof.gob.mx/normasOficiales/4485/semarnat1/semarnat1.htm

  • SGM. (2008). Diagnóstico ambiental de la asignación minera Peña Blanca, Aldama, Chihuahua. Pachuca, Hidalgo.

  • SGM. (2017). Informe final Regional Peña Blanca, Chihuahua. Gerencia de Evaluación de Minerales Radioactivos y Asociados. Pachuca, Hidalgo: Servicio Geológico Mexicano.

  • Solferino, G., & Anderson, A. J. (2012). Thermal reduction of molybdite and hematite in water and hydrogen peroxide-bearing solutions: Insights on redox conditions in Hydrothermal Diamond Anvil Cell (HDAC) experiments. Chemical Geology, 322–323, 215–222. https://doi.org/10.1016/j.chemgeo.2012.07.006

    Article  CAS  Google Scholar 

  • Stewart, W. A., Miller, S. D., & Smart, R. (2006). Advances in acid rock drainage (ARD) characterisation of mine wastes. In R. I. Barnhisel (Ed.), 7th International Conference on Acid Rock Drainage (ICARD) (pp. 26–30). St. Louis MO: American Society of Mining and Reclamation (ASMR). https://doi.org/10.21000/jasmr06022098

  • Stewart, W., Miller, S., Smart, R., Gerson, A., Thomas, J., Skinner, W., et al. (2003). Evaluation of the Net Acid Generation (NAG) test for assessing the acid generating capacity of sulfide minerals. In 6th International Conference on Acid Rock Drainage (pp. 617–625). Cairns, Queensland: The International Network for Acid Prevention. Retrieved January 17, 2022. https://www.inap.com.au/icard/

  • U.S. EPA. (1989). Risk assessment guidance for Superfund. Volume I Human Health Evaluation Manual (Part A). Washington, D.C.: U. S. Environmental Protection Agency.

  • U.S. EPA. (2002). Guidance on choosing a sampling design for environmental data collection. Washington, DC, USA.

  • Van Wyk, N., Fosso-Kankeu, E., Moyakhe, D., Waanders, F. B., Le Roux, M., & Campbell, Q. P. (2020). Natural oxidation of coal tailings from Middelburg area (South Africa), and impact on acid-generation potential. Journal of the Southern African Institute of Mining and Metallurgy, 120(11), 539–547. https://doi.org/10.17159/2411-9717/1205/2020

  • Weber, P. A. (2003). Geochemical investigations of neutralising reactions associated with acid rock drainage: Prediction, mechanisms and improved tools for management. University of South of Australia.

  • Weber, P. A., Hughes, J. B., Conner, L. B., Lindsay, P., & Smart, R. S. C. (2006). Short-term acid rock drainage characteristics determined by paste pH and kinetic NAG testing: Cypress prospect, New Zealand. In R. I. Barnhisel (Ed.), 7th International Conference on Acid Rock Drainage (ICARD) (Vol. 3, pp. 26–30). St. Louis MO: American Society of Mining and Reclamation (ASMR). https://doi.org/10.21000/jasmr06022289

  • Weber, P. A., Thomas, J. E., Skinner, W. M., & Smart, R. S. C. (2005). A methodology to determine the acid-neutralization capacity of rock samples. The Canadian Mineralogist, 43(4), 1183–1192. https://doi.org/10.2113/gscanmin.43.4.1183

    Article  CAS  Google Scholar 

  • Weber, S., & W. A., Skinner, W. M., Weisener, C. G., Thomas, J. E., & Smart, R. S. C. (2004). Geochemical effects of oxidation products and framboidal pyrite oxidation in acid mine drainage prediction techniques. Applied Geochemistry, 19(12), 1953–1974. https://doi.org/10.1016/j.apgeochem.2004.05.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Mexican Geological Survey (SGM) for the support of this investigation. In addition, our appreciation is extended to the SGM Experimental Centers of Chihuahua and Oaxaca for their help in developing the analytical techniques.

Author information

Authors and Affiliations

Authors

Contributions

FG and JA conceived and planned the research, wrote the main manuscript text, and supervised the project. AT collected the data and prepared all figures. CM analyzed the data and performed the statistical analysis. CM, AT, MG, and SJ contributed to the research’s design and implementation, the results analysis, and the manuscript writing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fredy Guzmán-Martínez.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzmán-Martínez, F., Arranz-González, JC., Tapia-Téllez, A. et al. Assessment of potential contamination and acid drainage generation in uranium mining zones of Peña Blanca, Chihuahua, Mexico. Environ Monit Assess 195, 386 (2023). https://doi.org/10.1007/s10661-023-10965-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-10965-9

Keywords

Navigation