Skip to main content
Log in

Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays L.) rhizospheric soil of non-ferrous metals smelting area

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Maize plant tissues and rhizosphere soil were collected from an agricultural area around the Huludao Zinc Plant in Liaoning Province, China, to investigate the effects of soil pH and organic matter content on heavy metal concentration and accumulation in different types of maize tissues. The mean pH of the soil samples was 7.02 (range 5.74–7.86), and the mean organic matter content was 31.03 g kg−1 (range 18.80–52.20 g kg−1). The average Cu, Zn, Pb, and Cd contents in soil were 2.92, 6.72, 7.95, and 16.28 times greater than the corresponding background values, respectively. The geo-accumulation index indicated that the soils were uncontaminated to moderately contaminated by Cu, moderately to strongly contaminated by Pb and Zn, and strongly contaminated by Cd. The average available Cu, Pb, Zn, and Cd contents in the soil samples were 16.34, 6.997, 69.77, and 0.190 mg kg−1, respectively, while their bioavailability coefficients were 28.53%, 1.65%, 40.44%, and 10.83%, respectively. The respective mean Pb and Cd concentrations in grain samples were 0.341 and 0.342 mg kg−1, which exceeded the maximum concentrations permitted by the Chinese National Standard. Thus, the maize grain is not safe for consumption and poses potential risks to human health. With the exception of Cu, the combined effect of pH and organic matter content had a stronger influence on the availability of heavy metals in soil compared with either factor alone. Cd uptake in maize plant tissues was affected by the combination of soil pH, organic matter content, and bioavailable Cd content in soil; however, the combination of these three factors had only slight effects on Cu, Zn, and Pb absorption in maize tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aiman, U., Mahmood, A., Waheed, S., & Malik, R. N. (2016). Enrichment, geo-accumulation and risk surveillance of toxic metals for different environmental compartments from Mehmood Booti dumping site, Lahore city, Pakistan. Chemosphere, 144, 2229–2237.

    CAS  Google Scholar 

  • Antoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., Prasad, M. N. V., Wenzel, W. W., & Rinklebe, J. (2017). Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation–a review. Earth-Science Reviews, 171, 621–645.

    CAS  Google Scholar 

  • Brokbartold, M., Grupe, M., & Marschner, B. (2012). Effectiveness of different soil amendments to reduce the Pb and Zn extractability and plant uptake in soils contaminated by anticorrosion paints beneath pylons. Journal of Plant Nutrition and Soil Science, 175(3), 443–455.

    CAS  Google Scholar 

  • Carbonell, G., de Imperial, R. M., Torrijos, M., Delgado, M., & Rodriguez, J. A. (2011). Effects of municipal solid waste compost and mineral fertilizer amendments on soil properties and heavy metals distribution in maize plants (Zea mays L.). Chemosphere, 85(10), 1614–1623.

    CAS  Google Scholar 

  • Chen, H., Arocena, J. M., Li, J., Thring, R. W., & Zhou, J. (2014). Assessments of chromium (and other metals) in vegetables and potential bio-accumulations in humans living in areas affected by tannery wastes. Chemosphere, 112, 412–419.

    CAS  Google Scholar 

  • Chen, Z., Huang, L., Zhou, C., Zhong, S., Wang, X., Dai, Y., & Jiang, X. (2017). Characteristics and evaluation of heavy metal pollution in vegetables in Guangzhou. Environmental Sciences, 38, 389–398 (in Chinese).

    Google Scholar 

  • CNEMC (China National Environmental Monitoring Centre). (1990). Background values of elements in China soil (pp. 342–378). Beijing: China Environmental Science Press.

    Google Scholar 

  • Gan, Y., Wang, L., Yang, G., Dai, J., Wang, R., & Wang, W. (2017). Multiple factors impact the contents of heavy metals in vegetables in high natural background area of China. Chemosphere, 184, 1388–1395.

    CAS  Google Scholar 

  • Gebrekidan, A., Weldegebriel, Y., Hadera, A., & Van der Bruggen, B. (2013). Toxicological assessment of heavy metals accumulated in vegetables and fruits grown in Ginfel river near Sheba Tannery, Tigray, Northern Ethiopia. Ecotoxicology and Environmental Safety, 95, 171–178.

    CAS  Google Scholar 

  • Guo, J. H., Liu, X. J., Zhang, Y., Shen, J. L., Han, W. X., Zhang, W. F., Christie, P., Goulding, K. W. T., Vitousek, P. M., & Zhang, F. S. (2010). Significant acidification in major Chinese croplands. Science, 327(5968), 1008–1010.

    CAS  Google Scholar 

  • Hattori, H., Kuniyasu, K., Chiba, K., & Chino, M. (2006). Effect of chloride application and low soil pH on cadmium uptake from soil by plants. Soil Science and Plant Nutrition, 52(1), 89–94.

    CAS  Google Scholar 

  • Huang, C. L., Bao, L. J., Luo, P., Wang, Z. Y., Li, S. M., & Zeng, E. Y. (2016). Potential health risk for residents around a typical e-waste recycling zone via inhalation of size-fractionated particle-bound heavy metals. Journal of Hazardous Materials, 317, 449–456.

    CAS  Google Scholar 

  • Islam, M. S., Ahmed, M. K., Habibullah-Al-Mamun, M., & Masunaga, S. (2015). Assessment of trace metals in foodstuffs grown around the vicinity of industries in Bangladesh. Journal of Food Composition and Analysis, 42, 8–15.

    CAS  Google Scholar 

  • Lee, P.-K., Choi, B. Y., & Kang, M. J. (2015). Assessment of mobility and bio-availability of heavy metals in dry depositions of Asian dust and implications for environmental risk. Chemosphere, 119, 1411–1421.

    CAS  Google Scholar 

  • Li, L., Wu, H., van Gestel, C. A. M., Peijnenburg, W. J. G. M., & Allen, H. E. (2014a). Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China. Environmental Pollution, 188, 144–152.

    CAS  Google Scholar 

  • Li, M., Cheng, X., & Guo, H. (2013). Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. International Biodeterioration & Biodegradation, 76, 81–85.

    CAS  Google Scholar 

  • Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014b). A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Science of the Total Environment, 468-469, 843–853.

    CAS  Google Scholar 

  • Liu, X., Song, Q., Tang, Y., Li, W., Xu, J., Wu, J., Wang, F., & Brookes, P. C. (2013). Human health risk assessment of heavy metals in soil–vegetable system: a multi-medium analysis. Science of the Total Environment, 463-464, 530–540.

    CAS  Google Scholar 

  • Lu, C. A., Zhang, J. F., Jiang, H. M., Yang, J. C., Zhang, J. T., Wang, J. Z., & Shan, H. X. (2010). Assessment of soil contamination with Cd, Pb and Zn and source identification in the area around the Huludao Zinc Plant. Journal of Hazardous Materials, 182(1-3), 743–748.

    CAS  Google Scholar 

  • Ma, Y., Rajkumar, M., Luo, Y., & Freitas, H. (2013). Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC6b. Chemosphere, 93(7), 1386–1392.

    CAS  Google Scholar 

  • Mani, D., Sharma, B., Kumar, C., & Balak, S. (2012). Cadmium and lead bioaccumulation during growth stages alters sugar and vitamin C content in dietary vegetables. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 82(4), 477–488.

    CAS  Google Scholar 

  • McCauley, A., Jones, C., Jacobsen, J. (2009). Soil pH and organic matter. Nutrient management modules 8, #4449-8. MontanaState University Extension Service, Bozeman, Montana, pp. 1-12.

  • Monterroso, C., Rodríguez, F., Chaves, R., Diez, J., Becerra-Castro, C., Kidd, P. S., & Macías, F. (2014). Heavy metal distribution in mine-soils and plants growing in a Pb/Zn-mining area in NW Spain. Applied Geochemistry, 44, 3–11.

    CAS  Google Scholar 

  • Muller, G. (1969). Index of geo-accumulation in sediments of the Rhine River. Geochemical Journal, 2, 108–118.

    Google Scholar 

  • Nabulo, G., Black, C. R., & Young, S. D. (2011). Trace metal uptake by tropical vegetables grown on soil amended with urban sewage sludge. Environmental Pollution, 159(2), 368–376.

    CAS  Google Scholar 

  • Noli, F., & Tsamos, P. (2016). Concentration of heavy metals and trace elements in soils, waters and vegetables and assessment of health risk in the vicinity of a lignite-fired power plant. Science of the Total Environment, 563-564, 377–385.

    CAS  Google Scholar 

  • Schnitzer, M. (1982). Total carbon, organic matter, and carbon. In Methods of soil analysis (pp. 539–577). Madisons: American Society of Agronomy.

    Google Scholar 

  • Scotti, I. A., Silva, S., & Baffi, C. (1999). Effects of fly ash pH on the uptake of heavy metals by chicory. Water, Air, & Soil Pollution, 109, 397–406.

    CAS  Google Scholar 

  • Seleiman, M. F., Santanen, A., Kleemola, J., Stoddard, F. L., & Mäkelä, P. S. A. (2013). Improved sustainability of feedstock production with sludge and interacting mycorrhiza. Chemosphere, 91(9), 1236–1242.

    CAS  Google Scholar 

  • Seleiman, M. F., & Kheir, A. M. S. (2018). Maize productivity, heavy metals uptake and their availability in contaminated clay and sandy alkaline soils as affected by inorganic and organic amendments. Chemosphere, 204, 514–522.

    CAS  Google Scholar 

  • Shen, M., Liu, L., Li, D. W., Zhou, W. N., Zhou, Z. P., Zhang, C. F., Luo, Y. Y., Wang, H. B., & Li, H. Y. (2013). The effect of endophytic Peyronellaea from heavy metal-contaminated and uncontaminated sites on maize growth, heavy metal absorption and accumulation. Fungal Ecology, 6(6), 539–545.

    Google Scholar 

  • Shukla, O. P., Juwarkar, A. A., Singh, S. K., Khan, S., & Rai, U. N. (2011). Growth responses and metal accumulation capabilities of woody plants during the phytoremediation of tannery sludge. Waste Management, 31(1), 115–123.

    CAS  Google Scholar 

  • Singh, A., Sharma, R. K., Agrawal, M., & Marshall, F. M. (2010). Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food and Chemical Toxicology, 48(2), 611–619.

    CAS  Google Scholar 

  • Soares, M. A. R., Quina, M. J., & Quinta-Ferreira, R. M. (2015). Immobilisation of lead and zinc in contaminated soil using compost derived from industrial eggshell. Journal of Environmental Management, 164, 137–145.

    CAS  Google Scholar 

  • Sun, C., Liu, J., Wang, Y., Sun, L., & Yu, H. (2013a). Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China. Chemosphere, 92(5), 517–523.

    CAS  Google Scholar 

  • Sun, F. F., Wang, F. H., Wang, X., He, W., Wen, D., Wang, Q. F., & Liu, X. X. (2013b). Soil threshold values of total and available cadmium for vegetable growing based on field data in Guangdong province, South China. Journal of the Science of Food and Agriculture, 93(8), 1967–1973.

    CAS  Google Scholar 

  • Wang, A. S., Angle, J. S., Chaney, R. L., Delorme, T. A., & Reeves, R. D. (2006). Soil pH Effects on Uptake of Cd and Zn by Thlaspi caerulescens. Plant and Soil, 281(1-2), 325–337.

    CAS  Google Scholar 

  • Williams, P. N., Zhang, H., Davison, W., Meharg, A. A., Hossain, M., Norton, G. J., Brammer, H., & Islam, M. R. (2011). Organic matter—solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils. Environmental Science & Technology, 45(14), 6080–6087.

    CAS  Google Scholar 

  • Xiao, L., Guan, D., Peart, M. R., Chen, Y., Li, Q., & Dai, J. (2017). The influence of bioavailable heavy metals and microbial parameters of soil on the metal accumulation in rice grain. Chemosphere, 185, 868–878.

    CAS  Google Scholar 

  • Xu, L., Lu, A., Wang, J., Ma, Z., Pan, L., Feng, X., & Luan, Y. (2015). Accumulation status, sources and phytoavailability of metals in greenhouse vegetable production systems in Beijing, China. Ecotoxicology and Environmental Safety, 122, 214–220.

    CAS  Google Scholar 

  • Xu, Q. T., & Zhang, M. K. (2017). Source identification and exchangeability of heavy metals accumulated in vegetable soils in the coastal plain of eastern Zhejiang province, China. Ecotoxicology and Environmental Safety, 142, 410–416.

  • Yu, H. Y., Liu, C., Zhu, J., Li, F., Deng, D.-M., Wang, Q., & Liu, C. (2016). Cadmium availability in rice paddy fields from a mining area: the effects of soil properties highlighting iron fractions and pH value. Environmental Pollution, 209, 38–45.

    CAS  Google Scholar 

  • Zahra, A., Hashmi, M. Z., Malik, R. N., & Ahmed, Z. (2014). Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah—Feeding tributary of the Rawal Lake Reservoir, Pakistan. Science of the Total Environment, 470-471, 925–933.

    CAS  Google Scholar 

  • Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F., & Zhang, G. (2011). The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159(1), 84–91.

    CAS  Google Scholar 

  • Zhan, H., Jiang, Y., Yuan, J., Hu, X., Nartey, O. D., & Wang, B. (2014). Trace metal pollution in soil and wild plants from lead–zinc smelting areas in Huixian County, Northwest China. Journal of Geochemical Exploration, 147, 182–188.

    CAS  Google Scholar 

  • Zhang, H., Guo, Q., Yang, J., Ma, J., Chen, G., Chen, T., Zhu, G., Wang, J., Zhang, G., Wang, X., & Shao, C. (2016). Comparison of chelates for enhancing Ricinus communis L. phytoremediation of Cd and Pb contaminated soil. Ecotoxicology and Environmental Safety, 133, 57–62.

    CAS  Google Scholar 

  • Zhang, S., Yao, H., Lu, Y., Yu, X., Wang, J., Sun, S., Liu, M., Li, D., Li, Y. F., & Zhang, D. (2017). Uptake and translocation of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by maize from soil irrigated with wastewater. Scientific Reports, 7(1), 12165.

    Google Scholar 

  • Zhao, K., Liu, X., Xu, J., & Selim, H. M. (2010). Heavy metal contaminations in a soil–rice system: identification of spatial dependence in relation to soil properties of paddy fields. Journal of Hazardous Materials, 181(1-3), 778–787.

    CAS  Google Scholar 

  • Zheng, N., Wang, Q., & Zheng, D. (2007). Health risk of Hg, Pb, Cd, Zn, and Cu to the inhabitants around Huludao Zinc Plant in China via consumption of vegetables. Science of the Total Environment, 383(1-3), 81–89.

    CAS  Google Scholar 

  • Zhuang, P., McBride, M. B., Xia, H., Li, N., & Li, Z. (2009). Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science of the Total Environment, 407(5), 1551–1561.

    CAS  Google Scholar 

Download references

Funding

The authors appreciate the support of the National Natural Science Foundation of China (No. 41722110 and No. 41571474), the Jilin Province Natural Science Foundation of China (No. 20170101203JC), and 135 Breading Project of Chinese Academy of Sciences, Northeast Institute of Geography and Agroecology (No. Y6H2081001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Zheng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, S., Zheng, N., Tang, L. et al. Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays L.) rhizospheric soil of non-ferrous metals smelting area. Environ Monit Assess 191, 634 (2019). https://doi.org/10.1007/s10661-019-7793-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7793-5

Keywords

Navigation