Skip to main content
Log in

Planting age of peach affects soil metal accumulation and distribution in soil profile

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Changes in soil available metal, particularly, distribution changes in the soil profile relative to long-term peach cultivation, have not been studied thoroughly. Soil samples at depths of up to 100 cm in the soil profile were taken from peach orchards that were cultivated for 7, 15, and 50 years. We analyzed available metals (Zn, Fe, Mn, Al, and Cu), soil pH, total nitrogen (TN), nitrate nitrogen (NO3-N), and ammonium nitrogen (NH4+-N) in different soil layers (0–10 cm, 10–20 cm, 20–40 cm, 40–60 cm, 60–80 cm, and 80–100 cm). The results showed that available metals were enriched in the topsoil (0–20 cm) after 50 years of peach cultivation, with the highest contents of available Fe (1.0 mg kg−1), Al (188.2 mg kg−1), and Cu (0.7 mg kg−1) in the 10–20 cm layer and Zn (11.7 mg kg−1) in the 0–10 cm layer. The soil pH in the 0–40 cm layer decreased with increasing periods of peach cultivation, with the lowest pH (4.2) in the 10–20 cm layer after 50 years of peach cultivation. Soil pH was negatively correlated with available metals (R = − 0.579, P < 0.05 for Zn, R = − 0.727, P < 0.01 for Fe, R = − 0.792, P < 0.01 for Mn, R = − 0.690, P < 0.01 for Al, and R = − 0.783, P < 0.01 for Cu). The highest contents of NO3-N (212.9 mg kg−1) and NH4+-N (10.2 mg kg−1) were observed in the 50-year-old 0–10 cm layer, and soil pH was correlated negatively with the contents of NO3-N and NH4+-N. Overall, our results indicated that the continuous input of nitrogen fertilizers may play an important role in soil acidification, and soil acidification may result in high accumulation of available metals in soil after long-term peach cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alekseeva, T., Alekseev, A., Xu, R. K., Zhao, A. Z., & Kalinin, P. (2011). Effect of soil acidification induced by a tea plantation on chemical and mineralogical properties of Alfisols in eastern China. Environmental Geochemistry and Health, 33, 137–148.

    Article  CAS  Google Scholar 

  • Bravo, S., Amorós, J. A., Pérez-de-los-Reyes, C., García, F. J., Moreno, M. M., Sánchez-Ormeño, M., & Higueras, P. (2017). Influence of the soil pH in the uptake and bioaccumulation of heavy metals (Fe, Zn, Cu, Pb and Mn) and other elements (Ca, K, Al, Sr and Ba) in vine leaves, Castilla-La Mancha (Spain). Journal of Geochemical Exploration, 174, 79–83.

    Article  CAS  Google Scholar 

  • Chen, D., Lan, Z., Hu, S., & Bai, Y. (2015a). Effects of nitrogen enrichment on belowground communities in grassland: Relative role of soil nitrogen availability vs. soil acidification. Soil Biology and Biochemistry, 89, 99–108.

    Article  CAS  Google Scholar 

  • Chen, D., Li, J., Lan, Z., Hu, S., & Bai, Y. (2015b). Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment. Functional. Ecology, 30, 658–669.

    Article  Google Scholar 

  • Cummings, G. A., & Xie, H. S. (1995). Effect of soil Ph and nitrogen source on the nutrient status in peach: II. Micronutrients. Journal of Plant Nutrition, 18, 553–562.

    Article  CAS  Google Scholar 

  • Fan, J., He, Z., Ma, L. Q., & Stoffella, P. J. (2011). Accumulation and availability of copper in citrus grove soils as affected by fungicide application. Journal of Soils & Sediments, 11, 639–648.

    Article  CAS  Google Scholar 

  • Fujii, K., Hayakawa, C., Panitkasate, T., Maskhao, I., Funakawa, S., Kosaki, T., & Nawata, E. (2017). Acidification and buffering mechanisms of tropical sandy soil in northeast Thailand. Soil and Tillage Research, 165, 80–87.

    Article  Google Scholar 

  • Gómez-Armesto, A., Carballeira-Díaz, J., Pérez-Rodríguez, P., Fernández-Calviño, D., Arias-Estévez, M., Nóvoa-Muñoz, J. C., Esperanza, Á.-R., Fernández-Sanjurjo, M. J., & Núñez-Delgado, A. (2015). Copper content and distribution in vineyard soils from Betanzos (A Coruña, Spain). Spanish journal of soil science, 5, 60–71.

    Google Scholar 

  • Han, F. X., & Singer, A. (2007). Biogeochemistry of trace elements in arid environments. Environmental Pollution, 13, 29–51.

    Google Scholar 

  • Jansen, B., Nierop, K. G. J., & Verstraten, J. M. (2003). Mobility of Fe (II), Fe(III) and Al in acidic forest soils mediated by dissolved organic matter: influence of solution pH and metal/organic carbon ratios. Geoderma, 113, 323–340.

    Article  CAS  Google Scholar 

  • Kidd, P., Barceló, J., Bernal, M. P., Navari-Izzo, F., Poschenrieder, C., Shilev, S., Clemente, R., & Monterroso, C. (2009). Trace element behaviour at the root–soil interface: implications in phytoremediation. Environmental & Experimental Botany, 67, 243–259.

    Article  CAS  Google Scholar 

  • Li, L., Wu, H., van Gestel, C. A. M., Peijnenburg, W. J. G. M., & Allen, H. E. (2014). Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China. Environmental Pollution, 188, 144–152.

    Article  CAS  Google Scholar 

  • Li, S., Li, H., Yang, C., Wang, Y., Xue, H., & Niu, Y. (2016). Rates of soil acidification in tea plantations and possible causes. Agriculture, Ecosystem. Environment, 233, 60–66.

    Article  CAS  Google Scholar 

  • Liebig, M. A., Ryschawy, J., Kronberg, S. L., Archer, D. W., Scholljegerdes, E. J., Hendrickson, J. R., & Tanaka, D. L. (2017). Integrated crop-livestock system effects on soil N, P, and pH in a semiarid region. Geoderma, 289, 178–184.

    Article  CAS  Google Scholar 

  • Likar, M., Vogelmikuš, K., Potisek, M., Hančević, K., Radić, T., Nečemer, M., & Regvar, M. (2015). Importance of soil and vineyard management in the determination of grapevine mineral composition. Science of the Total Environment, 505, 724–731.

    Article  CAS  Google Scholar 

  • Liu, X., Ma, J., Ma, Z.-W., & Li, L.-H. (2017). Soil nutrient contents and stoichiometry as affected by land-use in an agro-pastoral region of northwest China. Catena, 150, 146–153.

    Article  CAS  Google Scholar 

  • Luisam, M., & Francesco, C. (2010). Soil fungal communities as indicators for replanting new peach orchards in intensively cultivated areas. European Journal of Agronomy, 33, 188–196.

    Article  Google Scholar 

  • Mao, Q., Lu, X., Zhou, K., Chen, H., Zhu, X., Mori, T., & Mo, J. (2017). Effects of long-term nitrogen and phosphorus additions on soil acidification in an N-rich tropical forest. Geoderma, 285, 57–63.

    Article  CAS  Google Scholar 

  • Pérez-Esteban, J., Escolástico, C., Masaguer, A., Vargas, C., & Moliner, A. (2014). Soluble organic carbon and pH of organic amendments affect metal mobility and chemical speciation in mine soils. Chemosphere, 103, 164–171.

    Article  Google Scholar 

  • Schilling, K. E., Palmer, J. A., Bettis, E. A., Jacobson, P., Schultz, R. C., & Isenhart, T. M. (2009). Vertical distribution of total carbon, nitrogen and phosphorus in riparian soils of Walnut Creek, southern Iowa. Catena, 77, 266–26s.

    Article  CAS  Google Scholar 

  • Schroth, G., Teixeira, W. G., Seixas, R., Silva, L. F. D., Schaller, M., Macêdo, J. L. V., & Zech, W. (2000). Effect of five tree crops and a cover crop in multi-strata agroforestry at two fertilization levels on soil fertility and soil solution chemistry in central Amazonia. Plant & Soil, 221, 143–156.

    Article  CAS  Google Scholar 

  • Somavilla, L. M., Simão, D. G., Tiecher, T. L., Hammerschimitt, R. K., de Oliveira, J. M. S., Mayer, N. A., Pavanello, E. P., Trentin, E., Belles, S. W., & Brunetto, G. (2018). Structural changes in roots of peach rootstock cultivars grown in soil with high zinc content. Scientia Horticulturae, 237, 1–10.

    Article  CAS  Google Scholar 

  • Stevens, C. J., Dise, N. B., & Gowing, D. J. (2009). Regional trends in soil acidification and exchangeable metal concentrations in relation to acid deposition rates. Environmental. Pollution, 157, 313–319.

    Article  CAS  Google Scholar 

  • Tagliavini, M., Masia, A., & Quartieri, M. (1995). Bulk soil pH and rhizosphere pH of peach trees in calcareous and alkaline soils as affected by the form of nitrogen fertilizers. Plant & Soil, 176, 263–271.

    Article  CAS  Google Scholar 

  • Teng, Y., Feng, D., Wu, J., Zuo, R., Song, L., & Wang, J. (2015). Distribution, bioavailability, and potential ecological risk of Cu, Pb, and Zn in soil in a potential groundwater source area. Environmental Monitoring & Assessment, 187, 293.

    Article  Google Scholar 

  • Tiecher, T. L., Tiecher, T., Ceretta, C. A., Ferreira, P. A. A., Nicoloso, F. T., Soriani, H. H., Conti, L. D., Kulmann, M. S. S., Schneider, R. O., & Brunetto, G. (2017). Tolerance and translocation of heavy metals in young grapevine ( Vitis vinifera ) grown in sandy acidic soil with interaction of high doses of copper and zinc. Scientia Horticulturae, 222, 203–212.

    Article  CAS  Google Scholar 

  • Yang, X. D., Ni, K., Shi, Y. Z., Yi, X. Y., Zhang, Q. F., Fang, L., Ma, L. F., & Ruan, J. (2018). Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China. Agriculture Ecosystems & Environment, 252, 74–7s.

    Article  CAS  Google Scholar 

  • Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F., & Zhang, G. (2011). The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159, 84–91.

    Article  CAS  Google Scholar 

  • Zhang, Y., He, X., Liang, H., Zhao, J., Zhang, Y., Xu, C., & Shi, X. (2016). Long-term tobacco plantation induces soil acidification and soil base cation loss. Environmental Science Pollution Research, 23, 5442–5450.

    Article  CAS  Google Scholar 

  • Zhao, X., & Xing, G.-x. (2009). Variation in the relationship between nitrification and acidification of subtropical soils as affected by the addition of urea or ammonium sulfate. Soil Biology and Biochemistry, 41, 2584–2587.

    Article  CAS  Google Scholar 

  • Zhao, K., Liu, X., Xu, J., & Selim, H. M. (2010). Heavy metal contaminations in a soil–rice system: Identification of spatial dependence in relation to soil properties of paddy fields. Journal of Hazardous Materials, 181, 778–787.

    Article  CAS  Google Scholar 

  • Zhu, W., Liu, J., Ye, J., & Li, G. (2017). Effects of phytotoxic extracts from peach root bark and benzoic acid on peach seedlings growth, photosynthesis, antioxidance and ultrastructure properties. Scientia Horticulturae, 215, 49–58.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was financially supported by The National Key Research and Development Program of China (2018YFD0201409).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Ma.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Wu, Y., Guo, D. et al. Planting age of peach affects soil metal accumulation and distribution in soil profile. Environ Monit Assess 191, 306 (2019). https://doi.org/10.1007/s10661-019-7463-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7463-7

Keywords

Navigation