Skip to main content
Log in

Environmental and socioeconomic factors induced blood lead in children: an investigation from Kashmir, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Blood lead toxicity has been prominently related to vehicular emissions. The lead is a carcinogenic metal systematically damages bones and central nervous system. The present investigation is focused on likely impacts of environmental and socioeconomic factors on the concentration of blood lead levels in children. The findings of the study show that the highest blood lead levels were observed in the age group of 4–8 years (5.46 μg/dl) with mother’s education having an inverse proportionality with the blood lead levels of children. Furthermore, children belonging to families with income (> 100,000) exhibited the highest blood lead levels (5.52 μg/dl) than the rest of the categories which was further advocated by lower blood lead levels in children residing in better residential conditions. High proximity of school to highway distance seemed to play a vital role in the concentration of lead in children while the traffic flow density was observed to have proportionality effect on the blood lead levels. From the study, it is concluded that 28% of the children in the sample population were having lead levels above the permissible limits as per Centre for Disease Control and Prevention. The study reflects the alarming toxicity of lead in children residing in a non-industrial region which further gives rise to concerns about the health of the children residing in industrialized regions of the world with high lead levels in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acosta, J. A., Gabarrón, M., Faz, A., Martínez-Martínez, S., Zornoza, R., & Arocena, J. M. (2015). Influence of population density on the concentration and speciation of metals in the soil and street dust from urban areas. Chemosphere, 134, 328–337.

    Article  CAS  Google Scholar 

  • Adler, R. A., Claassen, M., Godfrey, L., & Turton, A. R. (2007). Water, mining and waste: an historical and economic perspective on conflict management in South Africa. Economics of Peace and Security Journal, 2, 32–41.

    Article  Google Scholar 

  • Ahamed, M., Verma, S., Kumar, A., & Siddiqui, M. K. J. (2010). Blood lead levels in children of Lucknow, India. Environmental Toxicology, 25, 48–54.

    CAS  Google Scholar 

  • Ahmad, M., Verma, S., Kumar, A., & Siddiqui, M. K. J. (2009). Blood lead levels in children of Lucknow. Indian Environmental Toxicology, 12, 48–54.

    Google Scholar 

  • Ahmad, E., Zaidi, A., Khan, M. S., & Oves, M. (2012). Heavy metal toxicity to symbiotic nitrogen-fixing microorganism and host legumes. Toxicity of heavy metals to legumes and bioremediation, 29–44.

  • ATSDR. (2000). Lead toxicity (pp. 22–26). Atlanta: Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention http://www.atsdr.cdc.gov.

    Google Scholar 

  • Azizi, S., Kamika, I., & Tekere, M. (2016). Evaluation of heavy metal removal from wastewater in a modified packed bed biofilm reactor. PLoS One, 11(5), e0155462. https://doi.org/10.1371/journal.pone.0155462.

    Article  CAS  Google Scholar 

  • Bergdahl, I. A., Schutz, A., Gerhardsson, L., Jensen, A., & Skerfving, S. (1997). Lead concentrations in human plasma, urine and whole blood. Scandinavian Journal of Work, Environment and Health, 23, 359–363.

    Article  CAS  Google Scholar 

  • Blais, J., Djedidi, Z., Cheikh, R. B., Tyagi, R., & Mercier, G. (2008). Metals precipitation from effluents: review. Practice Periodical of Hazardous, Toxic, Waste Management, 12, 135–149.

    Article  CAS  Google Scholar 

  • Bressler, J. P., & Goldstein, G. W. (1991). Mechanisms of lead neurotoxicity. Biochemical Pharmacology, 41(4), 479–484.

    Article  CAS  Google Scholar 

  • Brochin, R., Leone, S., Phillips, D., Shepard, N., Zisa, D., & Angerio, A. (2008). The cellular effect of lead poisoning and its clinical picture. The Georgetown Undergraduate Journal of Health Sciences, 5(2), 1–8.

    Google Scholar 

  • Buckett, N. R., Jones, M. S., & Marston, N. J. (2012). Branz housing condition survey- condition comparison by tenure (pp. 1–37). New Zealand: Study Report BRANZ.

    Google Scholar 

  • CDC. (2000). Blood lead levels in young children-United States and selected states, 1996-1999. Morbidity and Mortality Weekly Report, 49, 1133–1137.

    Google Scholar 

  • Chakraborty, S., Ray, M., & Ray, S. (2010). Toxicity of sodium arsenite in the gill of an economically important mollusc of India. Fish and Shellfsh Immunology, 29(1), 136–148.

    Article  CAS  Google Scholar 

  • Cookman, G. R., King, W., & Regan, C. M. (1987). Chronic low-level lead exposure impairs embryonic to adult conversion of the neural cell adhesion molecule. Journal of Neurochemistry, 49(2), 399–403.

    Article  CAS  Google Scholar 

  • Dart, R. C., Hurlbut, K. M., & Boyer-Hassen, L. V. (2004). Medical toxicology. In T. C. Dart, L. Williams, & Wilkins (Eds.), Lead (pp. 1423–1431). Philadelphia.

  • Eisler, R. (1986). Zinc hazards to fish, wildlife and invertebrates: a synoptic review. US Fish Wildlife Service Reproductive Biology, 85, 1–6.

    Google Scholar 

  • Fashola, M., Ngole-Jeme, V., & Babalola, O. (2016). Heavy metal pollution from gold mines: Environmental effects and bacterial strategies for resistance. International Journal of Environmental Research and Public Health, 13, 1047. https://doi.org/10.3390/ijerph13111047.

    Article  CAS  Google Scholar 

  • Flurin, V., Mauras, Y., Le Bouil, A., Krari, N., Kerjan, A., & Allain, P. (1998). Lead blood levels in children under 6 years of age in the Le Mans region. The Medical Press, 27, 57–59.

    CAS  Google Scholar 

  • Francis, E. G., & Pierre, E. B. (2005). Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes. Chemical Geology, 222, 149–167.

    Article  Google Scholar 

  • Gautam, R. K., Mudhoo, A., Lofrano, G., & Chattopadhyaya, M. C. (2014). Biomass-derived biosorbents for metal ions sequestration: adsorbent modification and activation methods and adsorbent regeneration. Journal of Environmental Chemical Engineering, 2(1), 239–259.

    Article  CAS  Google Scholar 

  • Gerhardsson, L., Dahlin, L., Knebel, R., & Schütz, A. (2002). Blood Lead Concentration after a Shotgun Accident. Environmental Health Perspectives, 110, 115–117.

    Article  CAS  Google Scholar 

  • Goyer, R. A. (1996). Results of lead research: prenatal exposure and neurological consequences. Environmental Health Perspectives, 104(10), 1050–1054.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Nayak, A., & Agarwal, S. (2015). Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environmental Engineering Research., 20(1), 1–18.

    Article  Google Scholar 

  • Jacob, B., Ritz, B., Heinrich, J., Hoelscher, B., & Wichman, H. E. (2000). The effect of low-level blood lead on haematological parameters in children. Environmental Research, 82, 150–159.

    Article  CAS  Google Scholar 

  • Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7, 60–72.

    Article  Google Scholar 

  • Jasinska, E. J., Goss, G. G., Gillis, P. L., van der Kraak, G. J., Matsumoto, J., de Souza Machado, A. A., Giacomin, M., Moon, T. W., Massarsky, A., Gagné, F., Servos, M. R., Wilson, J., Sultana, T., & Metcalfe, C. D. (2015). Assessment of biomarkers for contaminants of emerging concern on aquatic organisms downstream of a municipal wastewater discharge. Science of the Total Environment, 530-531, 140–153.

    Article  CAS  Google Scholar 

  • Jusko, T. A. (2007). Blood lead concentrations < 10μg/dl and child intelligence at 6 years of age. Environmental Health Perspectives, 16(2), 243–248.

    Article  Google Scholar 

  • Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152, 686–692.

    Article  CAS  Google Scholar 

  • Khan, F. I., Khisroon, M., Khan, A., Gulfam, N., Siraj, M., Zaidi, F., Ahmadullah, Abidullah, Fatima, S. H., Noreen, S., Hamidullah, Shah, Z. A., & Qadir, F. (2018). Bioaccumulation of heavy metals in water, sediments, and tissues and their histopathological effects on Anodonta cygnea (Linea, 1876) in Kabul River, Khyber Pakhtunkhwa, Pakistan. BioMed Research International, 2018, 1–10. https://doi.org/10.1155/2018/1910274.

    Article  CAS  Google Scholar 

  • Kolarevic, S., Kracun-Kolarevic, M., Kostic, J., et al. (2016). Assessment of the genotoxic potential along the Danube River by application of the comet assay on haemocytes of freshwater mussels: the joint Danube Survey 3. Science of the Total Environment, 540, 377–385.

    Article  CAS  Google Scholar 

  • Koren, G., Chang, N., Gonen, R., Klein, J., Weiner, L., Demshar, H., Pizzolato, S., Radde, I., & Shime, J. (1990). Lead exposure among mothers and their newborns in Toronto. Canadian Medical Association Journal, 142(11), 1241–1244.

    CAS  Google Scholar 

  • Kosolapov, A. B., Tsybul'ko, E. I., Makarova, E. V., & Cherevach, E. I. (2004). Use of the syrup prepared on the basis of wild-growing grasses of the Far East, in preventive maintenance of respiratory diseases and microelementoza at children. Voprosy Pitaniia, 73, 21–24.

    CAS  Google Scholar 

  • Kunhalman. (1999). Further extentions and revision of Binet- Simon scale. Journal of Criminal Law and Criminology, 8, 68–90.

    Google Scholar 

  • Landrigan, P. J., Schechter, C. B., Lipton, J. M., Fahs, M. C., & Schwartz, J. (2002). Environmental pollutants and disease in American children: estimates of morbidity, mortality and costs for lead poisoning, asthma, cancer, and developmental disabilities. Environmental Health Perspectives, 110, 721–728.

    Article  Google Scholar 

  • Langford, N. J., & Ferner, R. E. (2000). Episodes of environmental poisoning worldwide. Occupational and Environmental Medicine, 59, 855–860.

    Article  Google Scholar 

  • Lanphaer, B. P., Hornung, R., & Khoury, J. (2005). Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environmental Health Perspectives, 113(7), 894–899.

    Article  Google Scholar 

  • Manahan, S. E. (2003). Toxicological chemistry and biochemistry (3rd ed.). CRC Press, Limited Liability Company (LLC).

  • Markowitz. (2000). Mean-Variance Analysis in Portfolio Choice and Capital Markets. New York: Wiley.

    Google Scholar 

  • Martin, S., & Griswold, W. (2009). Human health effect of heavy metal. Center for Hazardous Substance Research, 15, 25–69.

    Google Scholar 

  • Martley, E., Gulson, B. L., & Pfeiffer, H. R. (2004). Metal concentrations in soils around the copper smelter and surrounding industrial complex of Port Kembla, NSW, Australia. The Science of the Total Environment, 325, 113–127.

    Article  CAS  Google Scholar 

  • Mason, L. A., Harp, J. P., & Han, D. Y. (2014). Pb neurotoxicity: neuropsychological effects of lead toxicity. BioMed Research International. https://doi.org/10.1155/2014/840547.

  • McBride, W. G., Black, B. P., & Brian, J. E. (1982). Blood lead levels and behavior of 400 pre-school children. The Medical Journal of Australia, 1, 26–29.

    Article  Google Scholar 

  • Memon, A. R., Tasneem, G. K., Hassan, I. A., & Nasreen, S. (2007). Evaluation of zinc status in whole blood and scalp hair of female cancer patients. International Journal of Clinical Chemistry and Diagnostic Laboratory Medicine, 10, 54–64.

    Google Scholar 

  • Meyer, I. H. (2003). Prejudice, social stress, and mental health in lesbian, gay and bisexual populations: Conceptual issues and research evidence. Psychological Bulletin, 129, 674–697.

    Article  Google Scholar 

  • Morais, S., Costa, F. G., & Pereira, M. L. (2012). Heavy metals and human health. In J. Osthuizen (Ed.), Environmental health – emerging issues and practice (pp. 227–246).

  • Mupa, M. (2013). Lead content of lichens in metropolitan Harare, Zimbabwe: air quality and health risk implications. Greener Journal of Environmental Management and Public Safety, 2, 75–82.

    Article  Google Scholar 

  • Nagajyoti, P., Lee, K., & Sreekanth, T. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8, 199–216.

    Article  CAS  Google Scholar 

  • Nicolescu, R., Petcu, C., Cordeanu, A., Fabritius, K., Schlumpf, M., Krebs, R., & Krämer, U., Winneke, G. (2008) Environmental exposure to lead, but not mercury, aluminum or arsenic, is related to core aspects of the attention deficit hyperactivity disorder (ADHD) in Romanian children: performance measures and questionnaire data. Environmental Health Perspectives (submitted).

  • Nielsen, J. B., Grandjean, P., & Jorgensen, P. J. (1998). Predictors of blood lead concentrations in the lead-free gasoline era. Scandinavian Journal of Work, Environment and Health, 24, 153–156.

    Article  CAS  Google Scholar 

  • Nriagu, J. O., & Pacnya, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333, 134–139.

    Article  CAS  Google Scholar 

  • Oves, M., Khan, M. S., & Zaidi, A. (2013). Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. European Journal of Soil Biology, 56, 72–83.

    Article  CAS  Google Scholar 

  • Oves, M., Saghir, K. M., Huda, Q. A., Nadeen, F. M., & Almeelbi, T. (2016). Heavy metals: biological importance and detoxification strategies. Journal of Bioremediation & Biodegradation, 7, 334. https://doi.org/10.4172/2155-6199.1000334.

    Article  CAS  Google Scholar 

  • Pandey, S., Parvez, S., Sayeed, I., Haque, R., Bin-Hafeez, B., & Raisuddin, S. (2003). Biomarkers of oxidative stress: a comparative study of river Yamuna fish Wallago attu (Bl. & Schn.). Science of the Total Environment, 309(1–3), 105–115.

    Article  CAS  Google Scholar 

  • Papanikolaou, G., & Pantopoulos, K. (2005). Iron metabolism and toxicity. Toxicology and Applied Pharmacology, 202, 199–211.

    Article  CAS  Google Scholar 

  • Pirkle, J. L., Brody, D. J., & Flegal, K. M. (1994). The decline in blood lead levels in the U.S.: the National Health and Nutrition Examination Surveys (NHANES). Journal of American Medical Association, 272, 284–291.

    Article  CAS  Google Scholar 

  • Pokras, M. A., & Kneeland, M. R. (2008). Lead poisoning: using transdisciplinary approaches to solve an ancient problem. Ecohealth, 5(3), 379–385.

    Article  Google Scholar 

  • Putra, W. P., Kamari, A., Yusoff, S. N. M., Ishak, C. F., Mohamed, A., Hashim, N., et al. (2014). Biosorption of Cu (II), Pb (II) and Zn (II) ions from aqueous solutions using selected waste materials: Adsorption and characterisation studies. Journal of Encapsulation and Adsorption Sciences, 4, 25–35.

    Article  Google Scholar 

  • Qiu, Y., Guan, D. S., Song, W. W., & Huang, K. Y. (2009). Capture of heavy metals and sulfur by foliar dust in urban Huizhou, Guangdong Province, China. Chemosphere, 75, 447–452.

    Article  CAS  Google Scholar 

  • Quinton, J. N., & Catt, J. A. (2007). Enrichment of heavy metals in sediment resulting from soil erosion on agricultural fields. Environmental Science & Technology, 41(10), 3495–3500.

    Article  CAS  Google Scholar 

  • Rasmussen, L. D., Sørensen, S. J., Turner, R. R., & Barkay, T. (2000). Application of a merlux biosensor for estimating bioavailable mercury in soil. Soil Biology and Biochemistry, 32, 639–646.

    Article  CAS  Google Scholar 

  • Reddy, M. V., Satpathy, D., & Dhiviya, K. S. (2013). Assessment of heavy metals (Cd and Pb) and micronutrients (Cu, Mn, and Zn) of paddy (Oryza sativa L.) field surface soil and water in a predominantly paddy-cultivated area at Puducherry (Pondicherry, India), and effects of the agricultural runoff on the elemental concentrations of a receiving rivulet. Environmental Monitoring and Assessment, 8, 6693–6704.

    Article  Google Scholar 

  • Riva, M. A., Lafranconi, A., D’Orso, M. I., & Cesana, G. (2012). Lead poisoning: historical aspects of a paradigmatic occupational and environmental disease. Safety and Health at Work, 3, 11–16.

    Article  CAS  Google Scholar 

  • Ryan, J. A., Scheckel, K. G., Berti, W. R., Brown, S. L., Casteel, S. W., Chaney, R. L., Hallfrisch, J., Doolan, M., Grevatt, P., Maddaloni, M., & Mosby, D. (2004). A field experiment in Joplin, Mo., demonstrates alternatives to traditional cleanups. Environmental Science & Technology, 38(1), 18A–24A.

    Article  CAS  Google Scholar 

  • Salonen, V., & Korkka, N. K. (2007). Influence of parent sediments on the concentration of heavy metals in urban and suburban soils in Turku, Finland. Applied Geochemistry, 22, 906–918.

    Article  CAS  Google Scholar 

  • Shafiq-ur-Rehman. (1999). Circadian rhythm of stereotypes complex behaviours in rats in lead exposure. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 23, 149–159.

    Article  CAS  Google Scholar 

  • Shafiq-ur-Rehman, Khushnood-ur-Rehman, Kabir-ud-Din, & Chandra, O. (1986). Differential effects of chronic lead intoxication on circadian rhythm of ambulatory activity on regional brain norepinephrine levels in rats. Archives of Environmental Contamination and Toxicology, 36, 81–91.

    Article  CAS  Google Scholar 

  • Shi, G. T., Chen, Z. L., Xu, S. Y., Zhang, J., Wang, L., Bi, C. J., et al. (2008). Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environmental Pollution, 156, 251–260.

    Article  CAS  Google Scholar 

  • Silbergeld, E. K. (1992). Mechanisms of lead neurotoxicity, or looking beyond the lamppost. FASEB Journal, 6(13), 3201–3206.

    Article  CAS  Google Scholar 

  • Singh, Y. P., & Narwal, R. S. (1974). Audience analysis for using written words community development and Panchayati Raj. Hyderabad Digest, 6(1), 22–28.

    Google Scholar 

  • Singh, D. V., Bhat, J. I. A., Bhat, R. A., Dervash, M. A., & Ganei, S. A. (2018). Vehicular stress a cause for heavy metal accumulation and change in physico-chemical characteristics of road side soils in Pahalgam. Environmental Monitoring and Assessment, 190, 353. https://doi.org/10.1007/s10661-018-6731-2.

    Article  CAS  Google Scholar 

  • Srinivasa, G. S., Ramakrishna, R. M., & Govil, P. K. (2010). Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. Journal of Hazardous Materials, 174, 113–121.

    Article  Google Scholar 

  • Stoyanova, Z., Zozikova, E., Poschenrieder, C., Barcelo, J., & Doncheva, S. (2008). The effect of silicon on the symptoms of manganese toxicity in maize plants. Acta Biologica Hungarica, 59, 479–487.

    Article  Google Scholar 

  • Sun, Y. B., Zhou, Q. X., Xie, X. K., & Liu, R. (2009). Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. Journal of Hazardous Materials, 174, 455–462.

    Article  Google Scholar 

  • Tabari, S., Saravi, S. S. S., Bandany, G. A., Dehghan, A., & Shokrzadeh, M. (2010). Heavy metals (Zn, Pb, Cd and Cr) in fish, water and sediments sampled form Southern Caspian Sea, Iran. Toxicology and Industrial Health, 26(10), 649–656.

    Article  CAS  Google Scholar 

  • Tang, W. W., Zeng, G. M., Gong, J. L., Liang, J., Xu, P., Zhang, C., et al. (2014). Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review. The Science of the Total Environment, 468, 1014–1027.

    Article  Google Scholar 

  • Taylor, M. P., Winder, C., & Lanphear, B. P. (2012). Eliminating childhood lead toxicity in Australia: a call to lower the intervention level. The Medical Journal of Australia, 197(9), 493.

    Article  Google Scholar 

  • Teo, J., Goh, K., Ahuja, A., Ng, H., & Poon, W. (1997). Intracranial vascular calcifications, glioblastoma multiforme, and lead poisoning. AJNR American Journal of Neuroradiology, 18, 576–579.

    CAS  Google Scholar 

  • Tekana, & Oladele. (2011). Impact analysis of Taung irrigation scheme on house-hold welfare among farmers. Journal of Human Ecology, 36(1), 67–71.

    Article  Google Scholar 

  • Tepferberg, M., & Almog, S. (1999). Prenatal lead exposure in Israel: an international comparison. Israel Medical Association Journal, 1, 250–253.

    Google Scholar 

  • Tong, S., Von-Schirnding, Y. E., & Prapamontol, T. (2000). Environmental lead exposure: a public health problem of global dimensions. Bulletin of World Health Organization, 78, 1068–1077.

    CAS  Google Scholar 

  • Vasilios, D., Theodor, S., Konstantinos, S., Evangelos, P. E., Fotini, K., & Dimitrios, L. (1997). Lead concentrations in maternal and umbilical cord blood in areas with high and low air pollution. Clinical and Experimental Obstetrics and Gynecology, 24, 187–189.

    Google Scholar 

  • Velea, T., Gherghe, L., Predica, V., & Krebs, R. (2009). Heavy metal contamination in the vicinity of an industrial area near Bucharest. Environmental Science and Pollution Research, 16(1), S27–S32.

    Article  CAS  Google Scholar 

  • Venkatesh, T. (2009). Global perspective of lead poisoning. Al-ameen Journal of Medical Science, 2(2), 1–4.

    Google Scholar 

  • Waldron, H. A. (1973). Lead poisoning in the ancient world. Medical History, 17, 391–399.

    Article  CAS  Google Scholar 

  • World Health Organization (WHO). (2003). A report on Lead: assessing the environmental burden of disease at national and local levels (pp. 254–261). Geneva: World Health Organization.

    Google Scholar 

  • Zaidi, A., Oves, M., Ahmad, E., & Khan, M.S. (2012). Importance of free-living fungi in heavy metal remediation. In: Biomanagement of Metal-Contaminated Soils. Environmental Pollution, 479–494.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rouf Ahmad Bhat.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, A., Bhat, R.A., Qadri, H. et al. Environmental and socioeconomic factors induced blood lead in children: an investigation from Kashmir, India. Environ Monit Assess 191, 76 (2019). https://doi.org/10.1007/s10661-019-7220-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7220-y

Keywords

Navigation