Skip to main content

Advertisement

Log in

Heavy metal leachability in soil amended with zeolite- or biochar-modified contaminated sediment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this work, reuse probability of heavy metal-contaminated sediment for land application was discussed using a 100-day column leaching assessment under the situation of simulated acid rain. For comparison, NaCl-modified zeolite and biochar were firstly studied for their adsorption capacity for Cu, Cd, and Pb in aqueous solution, and then their stabilizing effects on the three metals in sediment-soil mixture. Characteristic results indicated that NaCl-modified zeolite had properties more conducive to metal adsorption than biochar, including higher BET surface area and more negative surface charges. Adsorption capacities of NaCl-modified zeolite fitted by Langmuir isotherm model were 24.83, 35.57, and 133.16 mg g−1 for Cu, Cd, and Pb, respectively. Leaching results demonstrated that metal concentrations in the leachates of soil receiving zeolite- or biochar-modified sediment reduced significantly after 100 days compared with that of soil receiving bare sediment. Moreover, the NaCl-modified zeolite presented a better performance in stabilizing the three metals than biochar from the BCR sequential extraction result. Therefore, stabilization of the dredged contaminated sediment by modified zeolite ensures an environmentally friendly reuse of the sediment on land and makes the sediment treatment operation-able and cost-effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarez-Ayuso, E., Garcia-Sanchez, A., & Querol, X. (2003). Purification of metal electroplating waste waters using zeolites. Water Research, 37, 4855–4862.

    Article  CAS  Google Scholar 

  • Ates, A., & Akgül, G. (2016). Modification of natural zeolite with NaOH for removal of manganese in drinking water. Powder Technology, 287, 285–291.

    Article  CAS  Google Scholar 

  • Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbent for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, 97, 219–243.

    Article  CAS  Google Scholar 

  • Beesley, L., Moreno-Jimenez, E., Clemente, R., Lepp, N., & Dickinson, N. (2010). Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction. Environment Pollution, 158, 155–160.

    Article  CAS  Google Scholar 

  • Beesley, L., Inneh, O. S., Norton, G. J., Moreno-Jimenez, E., Pardo, T., Clemente, R., & Dawson, J. J. C. (2014). Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environment Pollution, 186, 195–202.

    Article  CAS  Google Scholar 

  • Boente, C., Sierra, C., Rodriguez-Valdés, E., Menéndez-Aguado, J. M., & Gallego, J. R. (2017). Soil washing optimization by means of attributive analysis: Case study for the removal of potentially toxic elements from soil contaminated with pyrish ash. Journal of Cleaner Production, 142, 2693–2699.

    Article  CAS  Google Scholar 

  • Bowman, R. S. (2003). Applications of surfactant-modified zeolites to environmental remediation. Microporous & Mesoporous Materials, 61, 43–56.

    Article  CAS  Google Scholar 

  • Chen, G. Q., Zeng, G. M., Du, C. Y., Huang, D. L., Tang, L., Wang, L., & Shen, G. L. (2010). Transfer of heavy metals from compost to red soil and groundwater under simulated rainfall conditions. Journal of Hazardous Materials, 181, 211–216.

    Article  CAS  Google Scholar 

  • Chen, X. C., Chen, G. C., Chen, L. G., Chen, Y. X., Lehmann, J., McBride, M. B., & Hay, A. G. (2011). Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology, 102, 8877–8884.

    Article  CAS  Google Scholar 

  • Chlopecka, A., & Adriano, D. C. (1996). Mimicked in-situ stabilization of metals in a cropped soil: Bioavailability and chemical form of zinc. Environmental Science & Technology, 30, 3294–3303.

    Article  CAS  Google Scholar 

  • Christidis, G. E., Moraetis, D., Keheyan, E., Akhalbedashvili, L., Kekelidze, N., Gevorkyan, R., Yeritsyan, H., & Sargsyan, H. (2003). Chemical and thermal modification of natural HEU-type zeolitic materials from Armenia, Georgia and Greece. Applied Clay Science, 24, 79–91.

    Article  CAS  Google Scholar 

  • Ding, Y., Liu, Y. G., Liu, S. B., Huang, X. X., Li, Z. W., Tan, X. F., Zeng, G. M., & Zhou, L. (2017). Potential benefits of biochar in agricultural soils: A review. Pedosphere, 27(4), 645–661.

    Article  Google Scholar 

  • Fathollahzadeh, H., Kaczala, F., Bhatnagar, A., & Hogland, W. (2014). Speciation of metals in contaminated sediments from Oskarshamn Harbor, Oskarshamn, Sweden. Environmental Science and Pollution Research, 21, 2455–2464.

    Article  CAS  Google Scholar 

  • GB 15618-2008. (2008). Environmental quality standards for soils. Ministry of Environmental Protection (China).

  • GB 3838-2002. (2002). Environmental quality standard for surface water. State Environmental Protection Administration (China).

  • Griffin, D. E., Wang, D. Y., Parikh, S. J., & Scow, K. M. (2017). Short-lived effects of walnut shell biochar on soils and crop yields in a long-term field experiment. Agriculture, Ecosystems & Environment, 236, 21–29.

    Article  CAS  Google Scholar 

  • Hahladakis, J. N., Latsos, A., & Gidarakos, E. (2016). Performance of electroremediation in real contaminated sediments using a big cell, periodic voltage and innovative surfactants. Journal of Hazardous Materials, 320, 376–385.

    Article  CAS  Google Scholar 

  • Hazrat, A., Ezzat, K., & Muhammad, A. S. (2013). Phytoremediation of heavy metals– Concepts and applications. Chemosphere, 91, 869–881.

    Article  Google Scholar 

  • Huang, X. X., Liu, Y. G., Liu, S. B., Tan, X. F., Ding, Y., Zeng, G. M., Zhou, Y. Y., Zhang, M. M., Wang, S. F., & Zheng, B. H. (2016). Effective removal of Cr(VI) using b-cyclodextrin-chitosan modified biochars with adsorption/reduction bifuctional roles. Rsc Advance, 6, 94–104.

    Article  CAS  Google Scholar 

  • Jia, W. L., Wang, B. L., Wang, C. P., & Sun, H. W. (2017). Tourmaline and biochar for the remediation of acid soil polluted with heavy metals. Journal of Environmental Chemical Engineering, 5, 2107–2114.

    Article  CAS  Google Scholar 

  • Kim, S. A., Kamala-Kannan, S., Lee, K. J., Park, Y. J., Shea, P. J., Lee, W. H., Kim, H. M., & Oh, T. (2013). Removal of Pb(II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite. Chemical Engineering Journal, 217, 54–60.

    Article  CAS  Google Scholar 

  • Kumpiene, J., Lagerkvist, A., & Maurice, C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—A review. Waste Management, 28, 215–225.

    Article  CAS  Google Scholar 

  • Kuzniatsova, T., Kim, Y., Shqau, K., Dutta, P. K., & Verweij, H. (2007). Zeta potential measurements of zeolite Y: Application in homogeneous deposition of particle coatings. Microporous & Mesoporous Materials, 103, 102–107.

    Article  CAS  Google Scholar 

  • Lee, S. H., Park, H., Koo, N., Hyun, S., & Hwang, A. (2011). Evaluation of the effectiveness of various amendments on trace metal stabilization by chemical and biological methods. Journal of Hazardous Materials, 188, 44–51.

    Article  CAS  Google Scholar 

  • Li, H. Q., Hu, L. H., Fan, J., & Lv, M. (2015). Status quo and cause of acid rain pollution in Hunan Province during twelfth five year plan (in Chinese). Environmental Science and Management, 40(11), 57–60.

    CAS  Google Scholar 

  • Mahabadi, A. A., Hajabbasi, M. A., Khademi, H., & Kazemian, H. (2007). Soil cadmium stabilization using an Iranian natural zeolite. Geoderma, 137, 388–393.

    Article  CAS  Google Scholar 

  • Mahar, A., Wang, P., Li, R. H., & Zhang, Z. Q. (2015). Immobilization of lead and cadmium in contaminated soil using amendments: a review. Pedosphere, 24(4), 555–568.

    Article  Google Scholar 

  • Mench, M. J., Didier, V. L., Leoffler, M., Gomez, A., & Pierre, M. (1994). A mimicked in situ–remediation study of metal contaminated soils with emphasis on cadmium and lead. Journal of Environmental Quality, 23, 58–63.

    Article  CAS  Google Scholar 

  • Mihaly-Cozmuta, L., Mihaly-Cozmuta, A., Peter, A., Nicula, C., Tutu, H., Silipas, D., & Indrea, E. (2014). Adsorption of heavy metal cations by Na-clinoptilolite: quilibrium and selectivity studies. Journal of Environenmtal Management, 137, 69–80.

    Article  CAS  Google Scholar 

  • Moreno, N., Querol, X., Ayora, C., Ferna ndez-Pereira, C., & Janssen-Jurkonicova, M. (2001a). Utilisation of zeolites synthesized from coal fly ash for the purification of acid mine waters. Environmental Science & Technology, 35, 3526–3534.

    Article  CAS  Google Scholar 

  • Moreno, N., Querol, X., Ayora, C., Alastuey, A., Pereira, C. F., & Janssen-Jurkovicová, M. (2001b). Potential environmental applications of pure zeolitic material synthesized from Fly ash. Journal of Environmental Engineering, 127, 994–1002.

    Article  CAS  Google Scholar 

  • Mumpton, F. A. (1999). La roca magica: Uses of natural zeolites in agriculture and industry. Natonal Academy of Sciences colloquium “Geology, Mineralogy, and Human Welfare”, Irvine, CA, National Academy of Sciences.

  • Narwal, R. P., Singh, B. R., & Salbu, B. (1999). Association of cadmium, zinc, copper, and nickel with components in naturally heavy metal-rich soils studied by parallel and sequential extractions. Communications in Soil Science and Plant Analysis, 30, 1209–1230.

    Article  CAS  Google Scholar 

  • Nguyen, T. C., Loganathan, P., Nguyen, T. V., Vigneswaran, S., Kandasamy, J., & Naidu, R. (2015). Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies. Chemical Engineering Journal, 270, 393–404.

    Article  CAS  Google Scholar 

  • Ostroski, I. C., Barros, M. A. S. D., Silva, E. A., Dantas, J. H., Arroyo, P. A., & Lima, O. C. M. (2009). A comparative study for the ion exchange of Fe(III) and Zn(II) on zeolite NaY. Journal of Hazardous Materials, 161, 1404–1412.

    Article  CAS  Google Scholar 

  • Peng, J. F., Song, Y. H., Yuan, P., Cui, X. Y., & Qiu, G. L. (2009). The remediation of heavy metals contaminated sediment. Journal of Hazardous Materials, 161, 633–640.

    Article  CAS  Google Scholar 

  • Querol, X., Alastuey, A., Moreno, N., Alvarez-Ayuso, E., Garcíasánchez, A., Cama, J., Ayora, C., & Simón, M. (2006). Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash. Chemosphere, 62, 171–180.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., & Rinklebe, J. (2015). Impact of emerging and low cost alternative amendments on the (im)mobilization and phytoavailability of Cd and Pb in a contaminated floodplain soil. Ecological Engineering, 74, 319–326.

    Article  Google Scholar 

  • Shi, W. Y., Shao, H. B., Li, H., Shao, M. A., & Du, S. (2009). Co-remediation of the lead-polluted garden soil by exogenous natural zeolite and humic acids. Journal of Hazardous Materials, 167, 136–140.

    Article  CAS  Google Scholar 

  • Sneddon, I. R., Orueetxebarria, M., Hodson, M. E., Schofield, P. F., & Valsami-Jones, E. (2006). Use of bone meal amendments to immobilise Pb, Zn and Cd in soil: A leaching column study. Environmental Pollution, 144, 816–825.

    Article  CAS  Google Scholar 

  • Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., de Macedo, J. L. V., Blum, W. E. H., & Zech, W. (2007). Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered central Amazonian upland soil. Plant & Soil, 291, 275–290.

    Article  CAS  Google Scholar 

  • Su, C., Zeng, G. M., Gong, J. L., Yang, C. P., Wan, J., Hu, L., Hua, S. S., & Guo, Y. Y. (2016). Impact of carbon nanotubes on the mobility of sulfonamide antibiotics in sediments in the Xiangjiang River. RSC Advance, 6, 16941–16951.

    Article  CAS  Google Scholar 

  • Tan, X. F., Liu, Y. G., Zeng, G. M., Wang, X., Hu, X. J., Gu, Y. L., & Yang, Z. Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, 70–85.

    Article  CAS  Google Scholar 

  • Uchimiya, M., Lima, I. M., Klasson, K. T., Wartelle, L. H., & Wartelle. (2010). Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter. Chemosphere, 80, 935–940.

    Article  CAS  Google Scholar 

  • Wen, J., Stacey, S. P., McLaughlin, M. J., & Kirby, J. K. (2009). Biodegradation of rhamnolipid, EDTA and citric acid in cadmium and zinc contaminated soils. Soil Biology and Biochemistry, 41(10), 2214–2221.

    Article  CAS  Google Scholar 

  • Wen, J., Yi, Y. J., & Zeng, G. M. (2016). Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction. Journal of Environmental Management, 178, 63–69.

    Article  CAS  Google Scholar 

  • Wen, J., Peng, Z. L., Liu, Y. G., Fang, Y., Zeng, G. M., & Zhang, S. Y. (2018). A case study of evaluating zeolite, CaCO3 and MnO2 for Cd contaminated sediment reuse in soil. Journal of Soils and Sediments, 18, 323–332.

    Article  CAS  Google Scholar 

  • Xu, J. (2009). The changing trendency of acid precipitation and countermeasures in Hunan Province (in Chinese). Environmental Science And Management, 34(8), 45–48.

    CAS  Google Scholar 

  • Xue, W. J., Huang, D. L., Zeng, G. M., Zhang, C., Xu, R., Cheng, M., & Deng, R. (2018). Nanoscale zero-valent iron coated with rhamnolipid as an effective stabilizer for immobilization of Cd and Pb in river sediments. Journal of Hazardous Materials, 341, 381–389.

    Article  Google Scholar 

  • Yi, Y. J., Wen, J., Zeng, G. M., Zhang, T. T., Huang, F. H., Qin, H. Y., & Tian, S. Y. (2017). A comparative study for the stabilisation of heavy metal contaminated sediment by limestone, MnO2 and natural zeolite. Environmental Science & Pollution Research, 24, 795–804.

    Article  CAS  Google Scholar 

  • Yu, G. W., Lei, H. Y., Tao, B., Zhong, L. I., Qiang, Y. U., & Song, X. Q. (2009). In-situ stabilisation followed by ex-situ composting for treatment and disposal of heavy metals polluted sediments. Journal of Environmental Science, 21, 877–883.

    Article  CAS  Google Scholar 

  • Zhu, Q. Q., & Wang, Z. L. (2012). Distribution characteristics and source analysis of heavy metals in sediments of the Main River Systems in China. Earth & Environment, 40, 305–313.

    Google Scholar 

Download references

Funding

This study received support from the National Natural Science Foundation of China (No. 51409099) and the Fundamental Research Funds for the Central Universities (No. 531107040752).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Wen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Z., Wen, J., Liu, Y. et al. Heavy metal leachability in soil amended with zeolite- or biochar-modified contaminated sediment. Environ Monit Assess 190, 751 (2018). https://doi.org/10.1007/s10661-018-7124-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-7124-2

Keywords

Navigation