Skip to main content

Advertisement

Log in

Relative importance of climate changes at different time scales on net primary productivity—a case study of the Karst area of northwest Guangxi, China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Climate changes are considered to significantly impact net primary productivity (NPP). However, there are few studies on how climate changes at multiple time scales impact NPP. With MODIS NPP product and station-based observations of sunshine duration, annual average temperature and annual precipitation, impacts of climate changes at different time scales on annual NPP, have been studied with EEMD (ensemble empirical mode decomposition) method in the Karst area of northwest Guangxi, China, during 2000–2013. Moreover, with partial least squares regression (PLSR) model, the relative importance of climatic variables for annual NPP has been explored. The results show that (1) only at quasi 3-year time scale do sunshine duration and temperature have significantly positive relations with NPP. (2) Annual precipitation has no significant relation to NPP by direct comparison, but significantly positive relation at 5-year time scale, which is because 5-year time scale is not the dominant scale of precipitation; (3) the changes of NPP may be dominated by inter-annual variabilities. (4) Multiple time scales analysis will greatly improve the performance of PLSR model for estimating NPP. The variable importance in projection (VIP) scores of sunshine duration and temperature at quasi 3-year time scale, and precipitation at quasi 5-year time scale are greater than 0.8, indicating important for NPP during 2000–2013. However, sunshine duration and temperature at quasi 3-year time scale are much more important. Our results underscore the importance of multiple time scales analysis for revealing the relations of NPP to changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aghakouchak, A., Cheng, L., Mazdiyasni, O., & Farahmand, A. (2014). Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought. Geophysical Research Letters, 41, 8847–8852.

    Article  Google Scholar 

  • Bloor, J. M. G., & Bardgett, R. D. (2012). Stability of above-ground and below-ground processes to extreme drought in model grassland ecosystems, interactions with plant species diversity and soil nitrogen availability. Perspectives in Plant Ecology, Evolution & Systematics, 14, 193–204.

    Article  Google Scholar 

  • Chapin, F. S., Matson, P. A., Vitousek, P., & Chapin, M. C. (2012). Principles of terrestrial ecosystem ecology (2nd ed.). New York: Springer.

    Google Scholar 

  • Chen, Z., Chen, Y., Bai, L., & Xu, J. (2016). Multiscale evolution of surface air temperature in the arid region of Northwest China and its linkages to ocean oscillations. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704.

  • Cherwin, K., & Knapp, A. (2012). Unexpected patterns of sensitivity to drought in three semi-arid grasslands. Oecologia, 169, 845–852.

    Article  Google Scholar 

  • Chong, I. G., & Jun, C. H. (2005). Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems, 78, 103–112.

    Article  CAS  Google Scholar 

  • Craine, J. M., Nippert, J. B., Elmore, A. J., Adam, M., Skibbe, A. M., Hutchinson, S. L., & Brunsell, N. A. (2012). Timing of climate variability and grassland productivity. PNAS, 109, 3401–3405.

    Article  CAS  Google Scholar 

  • Eisfelder, C., Klein, I., Niklaus, M., & Kuenzer, C. (2014). Net primary productivity in Kazakhstan, its spatio-temporal patterns and relation to meteorological variables. Journal of Arid Environments, 103, 17e30.

    Article  Google Scholar 

  • Fay, P. A., Blair, J. M., Smith, M. D., Nippert, J. B., Carlisle, J. D., & Knapp, A. K. (2011). Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function. Biogeosciences, 8, 3053–3068.

    Article  CAS  Google Scholar 

  • Field, C. B., Behrenfeld, M. J., Randerson, J. T., & Falkowski, P. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281, 237–240.

    Article  CAS  Google Scholar 

  • Gherardi, L. A., Osvaldo, E., & Sala, O. E. (2015). Enhanced precipitation variability decreases grass- and increases shrub-productivity. PNAS, 112, 12735–12740.

    Article  CAS  Google Scholar 

  • Guo, Q., Hu, Z., Li, S., Li, X., & Sun, X. (2012). Spatial variations in aboveground net primary productivity along a climate gradient in Eurasian temperate grassland: effects of mean annual precipitation and its seasonal distribution. Global Change Biology, 18, 3624–3631.

    Article  Google Scholar 

  • Heim, R. H., Jürgens, N., Große-Stoltenberg, A., & Oldeland, J. (2015). The effect of epidermal structures on leaf spectral signatures of ice plants (Aizoaceae). Remote Sensing, 7, 16901–16914.

    Article  Google Scholar 

  • Hoeppner, S. S., & Dukes, J. S. (2012). Interactive responses of old-field plant growth and composition to warming and precipitation. Global Change Biology, 18, 1754–1768.

    Article  Google Scholar 

  • Hoerling, M., Hurrell, J., Kumar, A., Terray, L., Eischeid, J., Pegion, P., Zhang, T., Quan, X. W., & Xu, T. Y. (2011). On North American decadal climate for 2011–2020. Journal of Climate, 24, 4519–4528.

    Article  Google Scholar 

  • Hsu, J. S., Powell, J., & Adler, P. B. (2012). Sensitivity of mean annual primary production to precipitation. Global Change Biology, 18, 2246–2255.

    Article  Google Scholar 

  • Huang, N. E., Shen, Z., & Long, S. R. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proceedings of the Royal Society of London A, 454, 903–995.

    Article  Google Scholar 

  • Jia, X., Xie, B., Shao, M., & Zhao, C. (2015). Primary productivity and precipitation-use efficiency in temperate grassland in the Loess Plateau of China. PLoS One, 10, e0135490.

    Article  Google Scholar 

  • Johnson, R. A., & Wichern, D. W. (2002). Applied multivariate statistical analysis. New Jersey: Prentice Hall.

    Google Scholar 

  • Liu, C., Dong, X., & Liu, Y. (2015). Changes of NPP and their relationship to climate factors based on the transformation of different scales in Gansu, China. Catena, 125, 190–199.

    Article  Google Scholar 

  • Liu, H. Y., Lin, Z. S., Qi, X. Z., Li, Y. X., Yu, M. T., Yang, H., & Shen, J. (2012). Possible link between Holocene East Asian monsoon and solar activity obtained from the EMD method. Nonlinear Processes in Geophysics, 19, 421–430.

    Article  Google Scholar 

  • Liu, Y. G., Liu, C. C., Wang, S. J., Guo, K., Yang, J., Zhang, X. S., & Li, G. Q. (2013). Organic carbon storage in four ecosystem types in the karst region of southwestern China. PLoS One, 8, e56443.

    Article  CAS  Google Scholar 

  • Monteith, J. L. (1972). Solar radiation and productivity in tropical ecosystem. Journal of Applied Ecology, 9, 747–766.

    Article  Google Scholar 

  • Ni, J. (2011). Impacts of climate change on Chinese ecosystems: key vulnerable regions and potential thresholds. Regional Environmental Change, 11, S49–S64.

    Article  Google Scholar 

  • Ouyang, S., Wang, X., Wu, Y., & Sun, O. J. (2014). Contrasting responses of net primary productivity to inter-annual variability and changes of climate among three forest types in northern China. Journal of Plant Ecology, 7, 309–320.

    Article  Google Scholar 

  • Parise, M., Dewaele, J., & Gutierrez, F. (2008). Engineering and environmental problems in Karst—an introduction. Engineering Geology, 99, 91–94.

    Article  Google Scholar 

  • Pérez-Enciso, M., & Tenenhaus, M. (2003). Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLS-DA) approach. Human Genetics, 112, 581–592.

    Google Scholar 

  • Potter, C., Klooster, S., & Genovese, V. (2012). Net primary production of terrestrial ecosystems from 2000 to 2009. Climatic Change, 115, 365–378.

    Article  Google Scholar 

  • Robinson, T. M. P., Pierre, K. J. L., & Vadeboncoeur, M. A. (2013). Seasonal, not annual precipitation drives community productivity across ecosystems. Oikos, 122, 727–738.

    Article  Google Scholar 

  • Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D., & Willis, K. J. (2016). Sensitivity of global terrestrial ecosystems to climate variability. Nature, 531, 229–232.

    Article  CAS  Google Scholar 

  • Sullivan, M. J. P., Thomsen, M. A., & Suttle, K. B. (2016). Grassland responses to increased rainfall depend on the timescale of forcing. Global Change Biology, 22, 1655–1665.

    Article  Google Scholar 

  • Thevs, N., Wuchererb, W., & Buras, A. (2013). Spatial distribution and carbon stock of the Saxaul vegetation of the winter-cold deserts of Middle Asia. Journal of Arid Environments, 90, 29–35.

    Article  Google Scholar 

  • Thomey, M. L., Collins, S. L., Vargas, R., Johnson, J. E., Brown, R. F., Natvig, D. O., & Friggens, M. T. (2011). Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland. Global Change Biology, 17, 1505–1515.

    Article  Google Scholar 

  • Vicente-Serranoa, S. M., Gouveia, C., Camarerod, J. J., Begueria, S., Trigo, R., Lopez-Moreno, J. I., Azorin-Molina, C., Pasho, E., Lorenzo-Lacruz, J., Revuelto, J., Morán-Tejeda, E., & Sanchez-Lorenzo, A. (2013). Response of vegetation to drought time-scales across global land biomes. PNAS, 110, 52–57.

    Article  Google Scholar 

  • Wang, H., Liu, G., Li, Z., Ye, X., Wang, M., & Gong, L. (2016). Impacts of climate change on net primary productivity in arid and semiarid regions of China. Chinese Geographical Science, 26, 35–47.

    Article  CAS  Google Scholar 

  • Wang, J., Wang, K., Zhang, M., & Zhang, C. (2015). Impacts of climate change and human activities on vegetation cover in hilly southern China. Ecological Engineering, 81, 451–461.

    Article  Google Scholar 

  • Wold, S. (1995). PLS for multivariate linear modeling. In H. van der Waterbeemd (Ed.), Chemometric methods in molecular design: methods and principles in medicinal chemistry (pp. 195–218). Weinheim: Verlag-Chemie.

    Google Scholar 

  • Wold, S., Algano, C., & Dunn, M. (1983). Pattern regression finding and using regularities in multivariate data. London: Analysis Applied Science Publication.

    Google Scholar 

  • Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109–130.

    Article  CAS  Google Scholar 

  • Wu, Z. H., & Huang, N. E. (2004). A study of the characteristics of white noise using the empirical mode decomposition method. Proceedings of the Royal Society of London A, 460, 1597–1611.

    Article  Google Scholar 

  • Wu, Z. H., & Huang, N. E. (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1, 1–41.

    Article  Google Scholar 

  • Xu, H., & Wang, X. (2016). Effects of altered precipitation regimes on plant productivity in the arid region of northern China. Ecological Informatics, 31, 137–146.

    Article  Google Scholar 

  • Xu, X., Sherry, R., Niu, S., Li, D., & Luo, Y. (2013). Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie. Global Change Biology, 19, 2753–2764.

    Article  Google Scholar 

  • Yin, Y., Tang, Q., Wang, L., & Liu, X. (2016). Risk and contributing factors of ecosystem shifts over naturally vegetated land under climate change in China. Scientific Reports. https://doi.org/10.1038/srep20905.

  • Yuan, D. X., & Cai, G. H. (1988). The science of karst environment (in Chinese). Chongqing: Chongqing Science and Technology Publishing House.

    Google Scholar 

  • Zhang, M., Wang, K., Liu, H., Zhang, C., Wang, J., Yue, Y., & Qi, X. (2015). How ecological restoration alters ecosystem services: an analysis of vegetation carbon sequestration in the karst area of northwest Guangxi, China. Environmental Earth Sciences, 74, 5307–5317.

    Article  CAS  Google Scholar 

  • Zhang, M. Y., Zhang, C. H., Wang, K. L., Yue, Y. M., Qi, X. K., & Fan, F. D. (2011). Spatiotemporal variation of karst ecosystem service values and its correlation with environmental factors in northwest Guangxi, China. Environmental Management, 48, 933–944.

    Article  Google Scholar 

  • Zhao, M. S., Heinsch, F. A., Nemani, R. R., & Running, S. W. (2005). Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sensing of Environment, 95(2), 164–176.

    Article  Google Scholar 

  • Zhu, L., & Southworth, J. (2013). Disentangling the relationships between net primary production and precipitation in southern Africa savannas using satellite observations from 1982 to 2010. Remote Sensing, 5, 3803–3825.

    Article  Google Scholar 

Download references

Funding

This research has been supported by National Natural Science Foundation of China (No. 31470519, 31370484), Natural Science Foundation of Jiangsu Province (BK20131399) and funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiyu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zhang, M. & Lin, Z. Relative importance of climate changes at different time scales on net primary productivity—a case study of the Karst area of northwest Guangxi, China. Environ Monit Assess 189, 539 (2017). https://doi.org/10.1007/s10661-017-6251-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6251-5

Keywords

Navigation