Skip to main content
Log in

Enhancement of cadmium uptake by Amaranthus caudatus, an ornamental plant, using tea saponin

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, tea saponin (TS) was extracted from tea camellia seed by microwave-assisted extraction. The potential of TS was compared with ethylenediaminetetracetic acid (EDTA), which is used as a common chemical agent to enhance uptake of cadmium (Cd) by Amaranthus caudatus, an ornamental plant in the natural vegetation of Turkey under pot conditions. The enrichment coefficient (EC) and translocation factor (TF) values were calculated to evaluate the removal efficiency of the TS and EDTA. The results showed that an increase in both TS and EDTA concentration significantly increased Cd uptake by A. caudatus, accumulating Cd in different parts of the plant. Higher EC and TF values obtained from stems, leaves, and inflorescences of A. caudatus showed that this plant might be cultivated and used as a hyperaccumulator in the uptake of Cd from the Cd contaminated soils. Thus, the present technique can efficiently reduce the metal load in the food chain; hence, it could be applied in catchment areas of urban cities where Cd contamination has become an unavoidable factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amna, Ali, N., Masood, S., Mukhtar, T., Kamran, M. A., Rafique, M., et al. (2015). Differential effects of cadmium and chromium on growth, photosynthetic activity, and metal uptake of Linum usitatissimum in association with Glomus intraradices. Environmental Monitoring and Assessment, 187(6), 311. doi:10.1007/s10661-015-4557-8.

    Article  CAS  Google Scholar 

  • Arthur, E. L., Rice, P. J., Rice, P. J., Anderson, T. A., Baladi, S. M., Henderson, K. L. D., et al. (2005). Phytoremediation—an overview. Critical Reviews in Plant Sciences, 24(2), 109–122. doi:10.1080/07352680590952496.

    Article  CAS  Google Scholar 

  • Auguy, F., Fahr, M., Moulin, P., Brugel, A., Laplaze, L., Mzibri, M. E., et al. (2013). Lead tolerance and accumulation in Hirschfeldia incana, a Mediterranean Brassicaceae from metalliferous mine spoils. PLoS One, 8(5), e61932. doi:10.1371/journal.pone.0061932.

    Article  CAS  Google Scholar 

  • Boran, H., Ciftci, C., Er, A., Kose, O., Kurtoglu, I.Z., & Kayis, S. (2015). Turkish Journal of Fisheries and Aquatic Sciences, 15(1). doi:10.4194/1303-2712-v15_1_06.

  • Cay, S., Uyanik, A., Engin, M. S., & Kutbay, H. G. (2015). Effect of EDTA and tannic acid on the removal of Cd, Ni, Pb and Cu from artificially contaminated soil by Althaea rosea Cavan. International Journal of Phytoremediation, 17(1–6), 568–574. doi:10.1080/15226514.2014.935285.

    Article  CAS  Google Scholar 

  • Chen, Y. H., Li, X. D., & Shen, Z. G. (2004). Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere, 57(3), 187–196. doi:10.1016/j.chemosphere.2004.05.044.

    Article  CAS  Google Scholar 

  • Cheng, S. F., Huang, C. Y., Lin, Y. C., Lin, S. C., & Chen, K. L. (2015). Phytoremediation of lead using corn in contaminated agricultural land-an in situ study and benefit assessment. Ecotoxicology and Environmental Safety, 111, 72–77. doi:10.1016/j.ecoenv.2014.09.024.

    Article  CAS  Google Scholar 

  • Chigbo, C., & Batty, L. (2015). Chelate-assisted phytoremediation of cu-pyrene-contaminated soil using Z. mays. Water, Air, & Soil Pollution, 226(3), doi:10.1007/s11270-014-2277-2.

  • Choi, J. H., Nam, J. O., Kim, J. Y., Kim, J. M., Paik, H. D., & Kim, C. H. (2006). Antioxidant, antimicrobial, and antitumor activities of partially purified substance(s) from green tea seed. Food Science and Biotechnology, 15(5), 672–676.

    Google Scholar 

  • Clemens, S., Palmgren, M. G., & Kramer, U. (2002). A long way ahead: understanding and engineering plant metal accumulation. Trends in Plant Science, 7(7), 309–315. doi:10.1016/S1360-1385(02)02295-1.

    Article  CAS  Google Scholar 

  • Ebrahimian, E., & Bybordi, A. (2014). Effect of organic acids on heavy-metal uptake and growth of canola grown in contaminated soil. Communications in Soil Science and Plant Analysis, 45(13), 1715–1725. doi:10.1080/00103624.2013.875206.

    Article  CAS  Google Scholar 

  • Engin, M. S. (2015). The assessment of trace metals at gill, muscle and liver tissue in Mugil cephalus. Environmental Monitoring and Assessment, 187(5), 255. doi:10.1007/s10661-015-4455-0.

    Article  Google Scholar 

  • Engin, M. S., Uyanik, A., Cay, S., & Icbudak, H. (2010). Effect of the adsorptive character of filter papers on the concentrations determined in studies involving heavy metal ions. Adsorption Science & Technology, 28(10), 837–846.

    Article  CAS  Google Scholar 

  • Han, W. Y., Kemmitt, S. J., & Brookes, P. C. (2007). Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity. Soil Biology & Biochemistry, 39(7), 1468–1478. doi:10.1016/j.soilbio.2006.12.029.

    Article  CAS  Google Scholar 

  • He, J., Wu, Z.-Y., Zhang, S., Zhou, Y., Zhao, F., Peng, Z.-Q., et al. (2013). Optimization of microwave-assisted extraction of tea saponin and its application on cleaning of historic silks. Journal of Surfactants and Detergents, 17(5), 919–928. doi:10.1007/s11743-013-1523-8.

    Article  Google Scholar 

  • Jelusic, M., & Lestan, D. (2015). Remediation and reclamation of soils heavily contaminated with toxic metals as a substrate for greening with ornamental plants and grasses. Chemosphere, 138, 1001–1007. doi:10.1016/j.chemosphere.2014.12.047.

    Article  CAS  Google Scholar 

  • Luo, C. L., Shen, Z. G., & Li, X. D. (2005). Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere, 59(1), 1–11. doi:10.1016/j.chemosphere.2004.09.100.

    Article  CAS  Google Scholar 

  • Mani, D., Kumar, C., Patel, N. K., & Sivakumar, D. (2014). Enhanced clean-up of lead-contaminated alluvial soil through Chrysanthemum indicum L. International Journal of Environmental Science and Technology, 12(4), 1211–1222. doi:10.1007/s13762-013-0488-5.

    Article  Google Scholar 

  • Miao, Q., & Yan, J. H. (2013). Comparison of three ornamental plants for phytoextraction potential of chromium removal from tannery sludge. Journal of Material Cycles and Waste Management, 15(1), 98–105. doi:10.1007/s10163-012-0095-4.

    Article  CAS  Google Scholar 

  • Neugschwandtner, R. W., Tlustos, P., Komarek, M., Szakova, J., & Jakoubkova, L. (2012). Chemically enhanced phytoextraction of risk elements from a contaminated agricultural soil using zea mays and triticum aestivum: performance and metal mobilization over a three year period. International Journal of Phytoremediation, 14(8), 754–771. doi:10.1080/15226514.2011.619231.

    Article  CAS  Google Scholar 

  • Perveen, A., Wahid, A., Mahmood, S., Hussain, I., & Rasheed, R. (2015). Possible mechanism of root-applied thiourea in improving growth, gas exchange and photosynthetic pigments in cadmium stressed maize (Zea mays). Brazilian Journal of Botany, 38(1), 71–79. doi:10.1007/s40415-014-0124-8.

    Article  Google Scholar 

  • Ramana, S., Biswas, A. K., Singh, A. B., Ajay, Ahirwar, N. K., & Rao, A. S. (2015). Tolerance of ornamental succulent plant crown of thorns (Euphorbia milli) to chromium and its remediation. International Journal of Phytoremediation, 17(4), 363–368. doi:10.1080/15226514.2013.862203.

    Article  CAS  Google Scholar 

  • Roy, D., Kommalapati, R. R., Mandava, S. S., Valsaraj, K. T., & Constant, W. D. (1997). Soil washing potential of a natural surfactant. Environmental Science & Technology, 31(3), 670–675. doi:10.1021/Es960181y.

    Article  CAS  Google Scholar 

  • Sabir, M., Hanafi, M. M., Zia-Ur-Rehman, M., Saifullah, Ahmad, H. R., Hakeem, K. R., et al. (2014). Comparison of low-molecular-weight organic acids and ethylenediaminetetraacetic acid to enhance phytoextraction of heavy metals by maize. Communications in Soil Science and Plant Analysis, 45(1), 42–52. doi:10.1080/00103624.2013.848879.

    Article  CAS  Google Scholar 

  • Shahid, M., Austruy, A., Echevarria, G., Arshad, M., Sanaullah, M., Aslam, M., et al. (2014). EDTA-enhanced phytoremediation of heavy metals: a review. Soil and Sediment Contamination, 23(4), 389–416. doi:10.1080/15320383.2014.831029.

    Article  CAS  Google Scholar 

  • Sheikh-Assadi, M., Khandan-Mirkohi, A., Alemardan, A., & Moreno-Jimenez, E. (2015). Mycorrhizal limonium sinuatum (L.) mill. Enhances accumulation of lead and cadmium. International Journal of Phytoremediation, 17(1-6), 556–562. doi:10.1080/15226514.2014.922928.

    Article  CAS  Google Scholar 

  • Sheoran, V., Sheoran, A. S., & Poonia, P. (2011). Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Critical Reviews in Environmental Science and Technology, 41(2), 168–214. doi:10.1080/10643380902718418.

    Article  Google Scholar 

  • Suthar, V., Memon, K. S., & Mahmood-ul-Hassan, M. (2014). EDTA-enhanced phytoremediation of contaminated calcareous soils: heavy metal bioavailability, extractability, and uptake by maize and sesbania. Environmental Monitoring and Assessment, 186(6), 3957–3968. doi:10.1007/s10661-014-3671-3.

    Article  CAS  Google Scholar 

  • Tandy, S., Schulin, R., & Nowack, B. (2006). The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere, 62(9), 1454–1463. doi:10.1016/j.chemosphere.2005.06.005.

    Article  CAS  Google Scholar 

  • Tanwar, A., Aggarwal, A., Charaya, M. U., & Kumar, P. (2013). Enhancement of lead uptake by fenugreek using EDTA and glomus mosseae. Communications in Soil Science and Plant Analysis, 44(22), 3431–3443. doi:10.1080/00103624.2013.847454.

    Article  CAS  Google Scholar 

  • Turan, M., & Bringu, A. (2007). Phytoremediation based on canola (Brassica napus L.) and Indian mustard (Brassica Juncea L.) planted on spiked soil by aliquot amount of Cd, Cu, Pb, and Zn. Plant, Soil and Environment, 53(1), 7–15.

    Article  CAS  Google Scholar 

  • Ullah, A., Javed, H. F., Wahid, A., & Sadia, B. (2016). Alleviating effect of exogenous application of ascorbic acid on growth and mineral nutrients in cadmium stressed barley (Hordeum vulgare) seedlings. International Journal of Agriculture and Biology, 18(1), 73–79. doi:10.17957/IJAB/15.0064.

    Article  Google Scholar 

  • Wang, S., & Liu, J. (2014). The effectiveness and risk comparison of EDTA with EGTA in enhancing Cd phytoextraction by Mirabilis jalapa L. Environmental Monitoring and Assessment, 186(2), 751–759. doi:10.1007/s10661-013-3414-x.

    Article  CAS  Google Scholar 

  • Wasay, S. A., Barrington, S. F., & Tokunaga, S. (1998). Remediation of soils polluted by heavy metals using salts of organic acids and chelating agents. Environmental Technology, 19(4), 369–379. doi:10.1080/09593331908616692.

    Article  CAS  Google Scholar 

  • Xia, H. L., Chi, X. Y., Yan, Z. J., & Cheng, W. W. (2009). Enhancing plant uptake of polychlorinated biphenyls and cadmium using tea saponin. Bioresource Technology, 100(20), 4649–4653. doi:10.1016/j.biortech.2009.04.069.

    Article  CAS  Google Scholar 

  • Zayed, A., Lytle, C. M., Qian, J. H., & Terry, N. (1998). Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta, 206(2), 293–299. doi:10.1007/s004250050403.

    Article  CAS  Google Scholar 

  • Zulfiqar, S., Wahid, A., Farooq, M., Maqbool, N., & Arfan, M. (2012). Phytoremediation of soil cadmium by using Chenopodium species. Pakistan Journal of Agricultural Sciences, 49(4), 435–445.

    Google Scholar 

Download references

Acknowledgments

The author thanks Suleyman Cay for his keen interest and very helpful contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seydahmet Cay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cay, S. Enhancement of cadmium uptake by Amaranthus caudatus, an ornamental plant, using tea saponin. Environ Monit Assess 188, 320 (2016). https://doi.org/10.1007/s10661-016-5334-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5334-z

Keywords

Navigation