Skip to main content

Advertisement

Log in

Visually determined stream mesohabitats influence benthic macroinvertebrate assessments in headwater streams

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Mesohabitat components such as substrate and surface flow types are intimately related to benthic macroinvertebrate assemblages in streams. Visual assessments of the distribution of these components provide a means of evaluating physical habitat heterogeneity and aid biodiversity surveys and monitoring. We determined the degree to which stream site and visually assessed mesohabitat variables explain variability (i.e., beta-diversity) in the relative abundance and presence-absence of all macroinvertebrate families and of Ephemeroptera, Plecoptera, and Trichoptera (EPT) genera. We systematically sampled a wide variety of mesohabitat arrangements as they occured in stream sites. We also estimated how much of the explanation given by mesohabitat was associated with substrate or surface flow types. We performed variation partitioning to determine fractions of explained variance through use of partial redundancy analysis (pRDA). Mesohabitats and stream sites explained together from 23 to 32 % of the variation in the four analyses. Stream site explained 8–11 % of that variation, and mesohabitat variables explained 13–20 %. Surface flow types accounted for >60 % of the variation provided by the mesohabitat component. These patterns are in accordance with those obtained in previous studies that showed the predominance of environmental variables over spatial location in explaining macroinvertebrate distribution. We conclude that visually assessed mesohabitat components are important predictors of assemblage composition, explaining significant amounts of beta-diversity. Therefore, they are critical to consider in ecological and biodiversity assessments involving macroinvertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allan, J. D. (2004). Landscape and riverscapes: the influence of land use on river ecosystems. Annual Reviews of Ecology, Evolution and Systematics, 35, 257–284.

    Article  Google Scholar 

  • Allan, J. D., & Castillo, M. M. (2007). Stream ecology: structure and function of running waters. 2nd edn. Dordrecht: Springer.

    Book  Google Scholar 

  • Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L., et al. (2011). Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters, 14, 19–28.

    Article  Google Scholar 

  • Angradi, T. R., Schweiger, E. W., & Bolgrien, D. W. (2006). Inter-habitat variation in the benthos of the Upper Missouri River (North Dakota, USA): implications for great river bioassessment. River Research and Applications, 22, 755–773.

    Article  Google Scholar 

  • Armitage, P. D., & Cannan, C. E. (1998). Nested multi-scale surveys in lotic systems: tools for management. In G. Bretschko & J. Helesic (Eds.), Advances in River Bottom Ecology (pp. 293–314). Leiden: Backhuys Publishers.

    Google Scholar 

  • Armitage, P. D., & Pardo, I. (1995). Impact assessment of regulation at the reach level using macroinvertebrate information from mesohabitats. Regulated Rivers: Research & Management, 10, 147–158.

    Article  Google Scholar 

  • Armitage, P. D., Brown, A., & Pardo, I. (1995). Temporal constancy of faunal assemblages in 'mesohabitats'— application to management? Archiv für Hydrobiologie, 133, 367–387.

    Google Scholar 

  • Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish (2nd ed.). Washington, DC: EPA 841-B-99–002. Office of Water, US Environmental Protection Agency.

    Google Scholar 

  • Beisel, J. N., Usseglio-Polatera, P., & Moreteau, J. C. (2000). The spatial heterogeneity of a river bottom: a key factor determining macroinvertebrate communities. Hydrobiologia, 422(423), 163–171.

    Article  Google Scholar 

  • Beisner, B. E., Peres-Neto, P. R., Lindström, E. S., Barnett, A., & Longhi, M. L. (2006). The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology, 87, 2985–2991.

    Article  Google Scholar 

  • Bispo, P. C., Oliveira, L. G., Crisci, V. L., & Silva, M. M. (2001). A pluviosidade como fator de alteração da entomofauna bentônica (Ephemeroptera, Plecoptera e Trichoptera) em córregos do Planalto Central do Brasil. Acta Limnologica Brasiliensia, 13, 1–9.

    Google Scholar 

  • Bonada, N., Rieradevall, M., Dallas, H., Davis, J., Day, J., Figueroa, R., et al. (2008). Multi-scale assessment of macroinvertebrate richness and composition in Mediterranean-climate rivers. Freshwater Biology, 53, 772–788.

    Article  Google Scholar 

  • Borcard, D., Legendre, P., & Drapeau, P. (1992). Partialling out the spatial component of ecological variation. Ecology, 73, 1045–1055.

    Article  Google Scholar 

  • Boyero, L. (2003). The quantification of local substrate heterogeneity in streams and its significance for macroinvertebrates assemblages. Hydrobiologia, 499, 161–168.

    Article  Google Scholar 

  • Brown, C. (2011). Dummies: create dummy/indicator variables flexibly and efficiently. R package version 1.5.4. http://CRAN.R-project.org/package=dummies.

  • Brown, B. L., Swan, C. M., Auerbach, D. A., Grant, E. H. C., Hitt, N. P., Maloney, K. O., et al. (2011). Metacommunity theory as a multispecies, multiscale framework for studying the influence of river network structure on riverine communities and ecosystems. Journal of the North American Benthological Society, 30, 310–327.

    Article  Google Scholar 

  • Buss, D. F., Baptista, D. F., Nessimian, J. L., & Egler, M. (2004). Substrate specificity, environmental degradation and disturbance structuring macroinvertebrate assemblages in neotropical streams. Hydrobiologia, 518, 179–188.

    Article  Google Scholar 

  • Carbonneau, P., Fonstad, M. A., Marcus, W. A., & Dugdale, S. J. (2012). Making riverscapes real. Geomorphology, 137, 74–86.

    Article  Google Scholar 

  • Clarke, A., Macnally, R., Bond, N., & Lake, P. S. (2010). Conserving macroinvertebrate diversity in headwater streams: the importance of knowing the relative contributions of α and β diversity. Diversity and Distributions, 16, 725–736.

    Article  Google Scholar 

  • Costa, S. S., & Melo, A. S. (2008). Beta diversity in stream macroinvertebrate assemblages: among-site andamong-microhabitat components. Hydrobiologia, 598, 131–138.

    Article  Google Scholar 

  • Costa, C., Ide, S., & Simonka, C. E. (2006). Insetos Imaturos: Metamorfose e Identificação. Ribeirão Preto: Holos.

    Google Scholar 

  • Cushman, S. A., & McGarigal, K. (2004). Patterns in the species–environment relationship depend on both scale and choice of response variables. Oikos, 105, 117–124.

    Article  Google Scholar 

  • Duan, X., Wang, Z., & Tian, S. (2008). Effect of streambed substrate on macroinvertebrate biodiversity. Frontiers of Environmental Science & Engineering in China, 2, 122–128.

    Article  Google Scholar 

  • Fernández, H. R., & Domínguez, E. (2001). Guia para la determinación de los artrópodos bentônicos sudamericanos. San Miguel de Tucumán: Universidad Nacional de Tucumán.

    Google Scholar 

  • Frissell, C. A., Liss, W. J., Warren, C. E., & Hurley, M. D. (1986). A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environmental Management, 10, 199–214.

    Article  Google Scholar 

  • Gerth, W. J., & Herlihy, A. T. (2006). Effect of sampling different habitat types in regional macroinvertebrate bioassessment surveys. Journal of the North American Benthological Society, 25, 501–512.

    Article  Google Scholar 

  • Graça, M. A. S., Pinto, P., Cortes, R., Coimbra, N., Oliveira, S., Morais, M., et al. (2004). Factors affecting macroinvertebrate richness and diversity in Portuguese streams: a two-scale analysis. International Review of Hydrobiology, 89, 151–164.

    Article  Google Scholar 

  • Grönroos, M., Heino, J., Siqueira, T., Landeiro, V. L., Kotanen, J., & Bini, L. M. (2013). Metacommunity structuring in stream networks: roles of dispersal mode, distance type and regional environmental context. Ecology and Evolution, 3, 4473–4487.

    Article  Google Scholar 

  • Heino, J. (2005). Functional biodiversity of macroinvertebrate assemblages along major ecological gradients of boreal headwater streams. Freshwater Biology, 50, 1578–1587.

    Article  Google Scholar 

  • Heino, J. (2011). A macroecological perspective of diversity patterns in the freshwater realm. Freshwater Biology, 56, 1703–1722.

    Article  Google Scholar 

  • Hepp, L. U., Landeiro, V. L., & Melo, A. S. (2012). Experimental assessment of the effects of environmental factors and longitudinal position on alpha and beta diversities of aquatic insects in a neotropical stream. International Review of Hydrobiology, 97, 157–167.

    Article  Google Scholar 

  • Hering, D., Moog, O., Sandin, L., & Verdonschot, P. F. M. (2004). Overview and application of the AQEM assessment system. Hydrobiologia, 516, 1–20.

    Article  Google Scholar 

  • Hughes, R. M., & Peck, D. V. (2008). Acquiring data for large aquatic resource surveys: the art of compromise among science, logistics, and reality. Journal of the North American Benthological Society, 27, 837–859.

    Article  Google Scholar 

  • Hughes, R. M., Herlihy, A. T., & Kaufmann, P. R. (2010). An evaluation of qualitative indexes of physical habitat applied to agricultural streams in ten U.S. States. Journal of the American Water Resources Association, 46, 792–806.

    Article  CAS  Google Scholar 

  • Jähnig, S., Brunzel, S., Lorenz, A., & Hering, D. (2009). Restoration effort, habitat mosaics, and macroinvertebrates —does channel form determine community response? Aquatic Conservation: Marine and Freshwater Systems, 19, 157–169.

    Article  Google Scholar 

  • Jiang, X. M., Xiong, J., Qiu, J. W., Wu, J. M., Wang, J. W., & Xie, Z. C. (2010). Structure of macroinvertebrate communities in relation to environmental variables in a subtropical Asian river system. International Review of Hydrobiology, 95, 42–57.

    Article  Google Scholar 

  • Johnson, R. K., & Goedkoop, W. (2002). Littoral macroinvertebrate communities: spatial scale and ecological relationships. Freshwater Biology, 47, 1840–1854.

    Article  Google Scholar 

  • Johnson, R. K., Goedkoop, W., & Sandin, L. (2004). Spatial scale and ecological relationships between the macroinvertebrate communities of stony habitats of streams and lakes. Freshwater Biology, 49, 1179–1194.

    Article  Google Scholar 

  • Jurasinski, G., Retzer, V., & Beierkuhnlein, C. (2009). Inventory, differentiation, and proportional diversity: a consistent terminology for quantifying species diversity. Oecologia, 159, 15–26.

    Article  Google Scholar 

  • Kemp, J. L., Harper, D. M., & Crosa, G. A. (2000). The habitat-scale ecohydraulics of rivers. Ecological Engineering, 16, 17–29.

    Article  Google Scholar 

  • Kovalenko, K. E., Thomaz, S. M., & Warfe, D. M. (2012). Habitat complexity: approaches and future directions. Hydrobiologia, 685, 1–17.

    Article  Google Scholar 

  • Kubíková, L., Simon, O. P., Tichá, K., Douda, K., Maciak, M., & Bílý, M. (2012). The influence of mesoscale habitat conditions on the macroinvertebrate composition of springs in a geologically homogeneous area. Freshwater Science, 31, 669–679.

    Article  Google Scholar 

  • Landeiro, V. L., Bini, L. M., Melo, A. S., Pes, A. M. O., & Magnusson, W. E. (2012). The roles of dispersal limitation and environmental conditions in controlling caddisfly (Trichoptera) assemblages. Freshwater Biology, 57, 1554–1564.

    Article  Google Scholar 

  • Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia, 129, 271–280.

    Article  Google Scholar 

  • Legendre, P., Borcard, D., & Peres-Neto, P. R. (2005). Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs, 75, 435–450.

    Article  Google Scholar 

  • Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., et al. (2004). The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters, 7, 601–613.

    Article  Google Scholar 

  • Ligeiro, R., Melo, A. S., & Callisto, M. (2010). Spacial scale and the diversity of macroinvertebrates in a Neotropical catchment. Freshwater Biology, 55, 424–435.

    Article  Google Scholar 

  • Ligeiro, R., Hughes, R. M., Kaufmann, P. R., Macedo, D. R., Firmiano, K. R., Ferreira, W. R., et al. (2013). Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness. Ecological Indicators, 25, 45–57.

    Article  Google Scholar 

  • Melo, A. S., & Froelich, C. G. (2001). Evaluation of methods for estimating macroinvertibrate species richness using individual stones in tropical streams. Freshwater Biology, 46, 711–721.

    Article  Google Scholar 

  • Merritt, R. W., & Cummins, K. W. (1996). An introduction to the aquatic insects of North America (3rd ed.). Dubuque: Kendall/Hunt Publishing Company.

  • Minshall, G. W. (1984). Aquatic insect-substratum relationships. In V. H. Resh & D. M. Rosenberg (Eds.), The ecology of aquatic insects (pp. 358–400). New York: Prager.

    Google Scholar 

  • Moya, N., Hughes, R. M., Dominguez, E., Gibon, F. M., Goita, E., & Oberdorff, T. (2011). Macroinvertebrate-based multimetric predictive models for measuring the biotic condition of Bolivian streams. Ecological Indicators, 11, 840–847.

    Article  Google Scholar 

  • Mugnai, R., Nessimian, J. L., & Baptista, D. F. (2010). Manual de identificação de macroinvertebrados aquáticos do Estado do Rio de Janeiro. Rio de Janeiro: Technical Books.

    Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.

    Article  CAS  Google Scholar 

  • Mykrä, H., Heino, J., & Muotka, T. (2007). Scale-related patterns in the spatial and environmental components of stream macroinvertebrate assemblage variation. Global Ecology and Biogeography, 16, 149–159.

    Article  Google Scholar 

  • Newson, M., & Newson, C. (2000). Geomorphology, ecology and river channel habitat: mesoscale approaches to basin-scale challenges. Progress in Physical Geography, 24, 195–217.

    Article  Google Scholar 

  • Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Henry, M., Stevens, H., Wagner, H. (2013). Vegan: Community Ecology Package. R package version 2.0-8. http://CRAN.Rproject.org/package=vegan.

  • Pardo, I., & Armitage, P. D. (1997). Species assemblages as descriptors of mesohabitats. Hydrobiologia, 344, 111–128.

    Article  Google Scholar 

  • Pastuchová, Z., Lehotský, M., & Grešková, A. (2008). Influence of morphohydraulic habitat structure on invertebrate communities (Ephemeroptera, Plecoptera and Trichoptera). Biologia, 63, 720–729.

    Article  Google Scholar 

  • Peck, D. V., Herlihy, A. T., Hill, B. H., Hughes, R. M., Kaufmann, P. R., Klemm, D. J., et al. (2006). Environmental monitoring and assessment program-surface waters: Western Pilot Study field operations manual for wadeable streams. Washington, DC: EPA/620/R-06/003. USEPA.

    Google Scholar 

  • Peres-Neto, P. R., & Legendre, P. (2010). Estimating and controlling for spatial structure in the study of ecological communities. Global Ecology and Biogeography, 19, 174–184.

    Article  Google Scholar 

  • Peres-Neto, P. R., Legendre, P., Dray, S., & Borcard, D. (2006). Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology, 87, 2614–2625.

    Article  Google Scholar 

  • Pérez, G. R. (1988). Guía para es estudio de los macroinvertebrados acuáticos del Departamento de Antioquia. Fondo Fen: Colombia/Colciencias, Universidad de Antioquia, Colombia.

    Google Scholar 

  • Principe, R. E., Raffaini, G. B., Gualdoni, C. M., Oberto, A. M., & Corigliano, M. C. (2007). Do hydraulic units define macroinvertebrate assemblages in mountain streams of central Argentina? Limnologica – Ecology and Management of Inland Waters, 37, 323–336.

    Article  CAS  Google Scholar 

  • R Development Core Team (2013). R: a language and environment for statistical computing (3.0.1). R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.

  • Reid, M. A., & Thoms, M. C. (2008). Surface flow types, near-bed hydraulics and the distribution of stream macroinvertebrates. Biogeosciences, 5, 1043–1055.

    Article  Google Scholar 

  • Rempel, L. L., Richardson, J. S., & Healey, M. C. (2000). Macroinvertebrate community structure along gradients of hydraulic and sedimentary conditions in a large gravel‐bed river. Freshwater Biology, 45, 57–73.

    Article  Google Scholar 

  • Rios, S. L., & Bailey, R. C. (2006). Relationship between riparian vegetation and stream benthic communities at three spatial scales. Hydrobiologia, 55, 153–160.

    Article  Google Scholar 

  • Roque, F. O., Siqueira, T., Bini, L. M., Ribeiro, M. C., Tambosi, L. R., Ciocheti, G., et al. (2010). Untangling associations between chironomid taxa in Neotropical streams using local and landscape filters. Freshwater Biology, 55, 847–865.

    Article  Google Scholar 

  • Sály, P., Takács, P., Kiss, I., Bíró, P., & Erős, T. (2011). The relative influence of spatial context and catchment- and site-scale environmental factors on stream fish assemblages in a human-modified landscape. Ecology of Freshwater Fish, 20, 251–262.

    Article  Google Scholar 

  • Schneck, F., Schwarzbold, A., & Melo, A. S. (2011). Substrate roughness affects stream benthic algal diversity, assemblage composition, and nestedness. Journal of the North American Benthological Society, 30, 1049–1056.

    Article  Google Scholar 

  • Siqueira, T., Bini, L. M., Roque, F. O., Couceiro, S. R. M., Trivinho-Strixino, S., & Cottenie, K. (2012). Common and rare species respond to similar niche processes in macroinvertebrate metacommunities. Ecography, 35, 183–192.

    Article  Google Scholar 

  • Stendera, S. E. S., & Johnson, R. K. (2005). Additive partitioning of aquatic invertebrate species diversity across multiple spatial scales. Freshwater Biology, 50, 1360–1375.

    Article  Google Scholar 

  • Thompson, R., & Townsend, C. (2006). A truce with neutral theory: local deterministic factors, species traits and dispersal limitation together determine patterns of diversity in stream invertebrates. Journal of Animal Ecology, 75, 476–484.

    Article  Google Scholar 

  • Tickner, D., Armitage, P., Bickerton, M. A., & Hall, K. A. (2000). Assessing stream quality using information on mesohabitat distribution and character. Aquatic Conservation: Marine & Freshwater Ecosystem, 10, 179–196.

    Article  Google Scholar 

  • Tuomisto, H., & Ruokolainen, K. (2006). Analyzing or explaining beta diversity? Understanding the targets of different methods of analysis. Ecology, 87, 2697–2708.

    Article  Google Scholar 

  • Verdonschot, P. F. (2001). Hydrology and substrates: determinants of oligochaete distribution in lowland streams (The Netherlands). Hydrobiologia, 158, 249–262.

    Article  Google Scholar 

  • Vinson, M. R., & Hawkins, C. P. (1998). Biodiversity of stream insects: variation at local, basin and regional scales. Annual Review of Entomology, 43, 271–293.

    Article  CAS  Google Scholar 

  • Wang, L., Weigel, B. W., Kanehl, P., & Lohman, K. (2006). Influence of riffle and snag habitat specific sampling on stream macroinvertebrate assemblage measures in bioassessment. Environmental Monitoring and Assessment, 119, 254–273.

    Google Scholar 

  • Wantzen, K. M. (2003). Cerrado streams— characteristics of a threatened freshwater ecosystem type on the tertiary shields of South America. Amazoniana, 17, 485–502.

    Google Scholar 

  • Whittaker, R. H. (1960). Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 26, 1–80.

    Article  Google Scholar 

  • Wiens, J. A. (2002). Riverine landscapes: taking landscape ecology into the water. Freshwater Biology, 47, 501–515.

    Article  Google Scholar 

Download references

Acknowledgments

Colleagues from the Pontifícia Universidade Católica-Minas Gerais, Universidade Federal de Lavras, and Universidade Federal de Minas Gerais assisted with field collections and sample processing. We thank Péter Sály for help with data analyses. We received funding from CEMIG (Companhia Energética de Minas Gerais) Programa Peixe-Vivo and Pesquisa & Desenvolvimento/Agência Nacional de Energia Elétrica - P&D ANEEL/CEMIG GT- 487, CNPQ (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais), and Fulbright-Brasil (for RMH). The manuscript was first drafted while the first author was a guest researcher at the USEPA Corvallis Laboratory. MC received a research grant and a research fellowship from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq nos. 302960/2011-2 and 475830/2008-3) and from the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG nos. PPM-00077/13 and APQ-2593-3.12-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Déborah R. O. Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, D.R.O., Ligeiro, R., Hughes, R.M. et al. Visually determined stream mesohabitats influence benthic macroinvertebrate assessments in headwater streams. Environ Monit Assess 186, 5479–5488 (2014). https://doi.org/10.1007/s10661-014-3797-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3797-3

Keywords

Navigation