Skip to main content

Advertisement

Log in

The effects of biotic and abiotic factors on the spatial heterogeneity of alpine grassland vegetation at a small scale on the Qinghai–Tibet Plateau (QTP), China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Understanding the complex effects of biotic and abiotic factors on the composition of vegetation is very important for developing and implementing strategies for promoting sustainable grassland development. The vegetation–disturbance–environment relationship was examined in degraded alpine grasslands in the headwater areas of three rivers on the Qinghai–Tibet Plateau in this study. The investigated hypotheses were that (1) the heterogeneity of the vegetation of the alpine grassland is due to a combination of biotic and abiotic factors and that (2) at a small scale, biotic factors are more important for the distribution of alpine vegetation. On this basis, four transects were set along altitudinal gradients from 3,770 to 3,890 m on a sunny slope, and four parallel transects were set along altitudinal gradients on a shady slope in alpine grasslands in Guoluo Prefecture of Qinghai Province, China. It was found that biological disturbances were the major forces driving the spatial heterogeneity of the alpine grassland vegetation and abiotic factors were of secondary importance. Heavy grazing and intensive rat activity resulted in increases in unpalatable and poisonous weeds and decreased fine forages in the form of sedges, forbs, and grasses in the vegetation composition. Habitat degradation associated with biological disturbances significantly affected the spatial variation of the alpine grassland vegetation, i.e., more pioneer plants of poisonous or unpalatable weed species, such as Ligularia virgaurea and Euphorbia fischeriana, were found in bare patches. Environmental/abiotic factors were less important than biological disturbances in affecting the spatial distribution of the alpine grassland vegetation at a small scale. It was concluded that rat control and light grazing should be applied first in implementing restoration strategies. The primary vegetation in lightly grazed and less rat-damaged sites should be regarded as a reference for devising vegetation restoration measures in alpine pastoral regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aronson, J., Floret, C., LeFloc'h, E., Ovalle, C., & Pontanier, R. (1993). Restoration and rehabilitation of degraded ecosystems in arid and semi-arid lands. I. A view from the south. Restoration Ecology, 1, 8–17.

    Google Scholar 

  • Austin, M. P. (2002). Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling, 157(2–3), 101–118.

    Article  Google Scholar 

  • Austrheim, G., Mysterud, A., Hassel, K., Evju, M., & Okland, R. H. (2007). Interactions between sheep, rodents, graminoids, and bryophytes in an oceanic alpine ecosystem of low productivity. Ecoscience, 14, 178–187.

    Article  Google Scholar 

  • Brandta, J. S., Haynesb, M. A., Kuemmerlec, T., Wallerb, D. M., & Radeloffa, V. C. (2013). Regime shift on the roof of the world: Alpine meadows converting to shrublands in the southern Himalayas. Biological Conservation, 158, 116–127.

    Article  Google Scholar 

  • Brathen, K. A., Ims, R. A., Yoccoz, N. G., Fauchald, P., Tveraa, T., & Hausner, V. H. (2007). Induced shift in ecosystem productivity? Extensive scale effects of abundant large herbivores. Ecosystems, 10, 773–789.

    Article  Google Scholar 

  • Brown, J., Miller, P. C., Tieszen, L. L., & Bunnell, F. (1980). An Arctic ecosystem: the coastal tundra at Barrow, Alaska. Stroudsburg: Dowden, Hutchinson and Ross.

    Book  Google Scholar 

  • Cao, G., Tang, Y., Mo, W., Wang, Y., Li, Y., & Zhao, X. (2004). Grazing intensity alters soil respiration in an alpine meadow on the Tibetan plateau. Soil Biology and Biochemistry, 36(2), 237–243.

    Article  CAS  Google Scholar 

  • Chen, D. D., Zhang, S. H., Dong, S. K., Wang, X. T., & Du, G. Z. (2010). Effect of land-use on soil nutrients and microbial biomass of an alpine region on the northeastern Tibetan Plateau, China. Land Degradation & Development, 21, 446–452.

    Google Scholar 

  • Chen, J., Yamamura, Y., Hori, Y., Shiyomi, M., Yasuda, T., Hua-kun, Z., et al. (2008). Small-scale species richness and its spatial variation in an alpine meadow on the Qinghai–Tibet Plateau. Ecological Research, 23(4), 657–663.

    Article  Google Scholar 

  • Day, N. J., & Buckley, H. L. (2013). Twenty-five years of plant community dynamics and invasion in New Zealand tussock grasslands. Austral Ecology. doi:10.1111/aec.12016.

  • Dong, S., Wen, L., Zhu, L., & Li, X. (2010). Implication of coupled natural and human systems in sustainable rangeland ecosystem management in HKH region. Frontiers of Earth Science in China, 4(1), 42–50.

    Article  Google Scholar 

  • Dong, S. C., Zhou, C. J., & Wang, H. Y. (2002). Ecological crisis and countermeasures of the Three Rivers Headstream Regions. Journal of Natural Resources, 17, 713–720.

    Google Scholar 

  • Evju, M., Austrheim, G., Halvorsen, R., & Mysterud, A. (2009). Grazing responses in herbs in relation to herbivore selectivity and plant traits in an alpine ecosystem. Oecologia, 161, 77–85.

    Article  Google Scholar 

  • Fan, J. W., Shao, Q. Q., Liu, J. Y., Wang, J. B., Harris, W., Chen, Z. Q., et al. (2010). Assessment of effects of climate change and grazing activity on grassland yield in the Three Rivers Headwaters Region of Qinghai–Tibet Plateau, China. Environmental Monitoring and Assessment, 170(1–4), 571–584.

    Article  Google Scholar 

  • Feng, Y., Lu, Q., Tokola, T., Liu, H., & Wang, X. (2009). Assessment of grassland degradation in Guinan County, Qinghai Province, China, in the past 30 years. Land Degradation & Development, 20(1), 55–68.

    Article  Google Scholar 

  • Floyd, D. A., & Anderson, J. E. (1987). A comparison of three methods for estimating plant cover. Journal of Ecology, 75, 221–228.

    Article  Google Scholar 

  • Forbes, B. C., & Jefferies, R. L. (1999). Revegetation of disturbed arctic sites: constraints and applications. Biological Conservation, 88, 15–24.

    Article  Google Scholar 

  • Fu, H., Wang, Y. R., Wu, C. X., & Ta, L. T. (2002). Effects of grazing on soil physical and chemical properties of Alxa desert grassland. Journal of Desert Research, 22(4), 339–343.

    Google Scholar 

  • Gao, Q. Z., Li, Y., Wan, Y. F., Jiangcun, W. Z., Qin, X. B., & Wang, B. S. (2009). Significant achievements in protection and restoration of Alpine grassland ecosystem in northern Tibet, China. Restoration Ecology, 17(3), 320–323.

    Article  Google Scholar 

  • Gao, Q. Z., Wan, Y. F., Li, Y., Guo, Y. Q., Ganjurjav, Qin, X. B., et al. (2013). Effects of topography and human activity on the net primary productivity (NPP) of alpine grassland in northern Tibet from 1981 to 2004. International Journal of Remote Sensing, 34(6), 2057–2069.

    Article  Google Scholar 

  • Gerlacha, R., Baumewerd-Schmidtb, H., Borgc, K. V. D., Eckmeierd, E., & Schmidtd, M. W. I. (2006). Prehistoric alteration of soil in the Lower Rhine Basin, Northwest Germany—archaeological, 14C and geochemical evidence. Geoderma, 136(1–2), 38–50.

    Article  Google Scholar 

  • Harris, R. B. (2010). Rangeland degradation on the Qinghai–Tibetan plateau: a review of the evidence of its magnitude and causes. Journal of Arid Environments, 74(1), 1–12.

    Article  CAS  Google Scholar 

  • Huffman, D. W., Laughlin, D. C., Pearson, K. M., & Pandey, S. (2009). Effects of vertebrate herbivores and shrub characteristics on arthropod assemblages in a northern Arizona forest ecosystem. Forest Ecology and Management, 258, 616–625.

    Article  Google Scholar 

  • Jaccard, P. (1912). The distribution of the flora in the alpine zone. New Phytologist, 11(2), 37–50.

    Article  Google Scholar 

  • Klein, J. A., Harte, J., & Zhao, X. Q. (2007). Experimental warming, not grazing, decreases rangeland quality on the Tibetan plateau. Ecological Applications, 17(2), 541–557.

    Article  Google Scholar 

  • Kohyani, P. T., Bossuyt, B., Bonte, D., & Hoffmann, M. (2008). Grazing as a management tool in dune grasslands: evidence of soil and scale dependence of the effect of large herbivores on plant diversity. Biological Conservation, 141, 1687–1694.

    Article  Google Scholar 

  • Lan, Y. R. (2004). The degradation problem and strategy of alpine meadow in Qinghai–Tibetan Plateau. Qinghai Prataculture, 13, 27–30.

    Google Scholar 

  • Li, X. G., Li, F. M., Zed, R., & Zhan, Z. Y. (2007). Soil physical properties and their relations to organic carbon pools as affected by land use in an alpine pastureland. Geoderma, 139, 98–105.

    Article  CAS  Google Scholar 

  • Li, X. L. (2002). Natural factors and formative mechanism of "black beach" formed on grassland in Qinghai–Tibetan plateau. Pratacultural Science, 19, 20–22.

    Google Scholar 

  • Li, X. L., & Huang, B. N. (1995). The cause of “black soil patch” grassland in Qinghai province and management. Grassland of China, 51, 64–67.

    Google Scholar 

  • Luo, C., Chang, X., Zhang, Z., Duan, J., Zhao, X., Su, A., et al. (2009). Effects of grazing and experimental warming on DOC concentrations in the soil solution on the Qinghai–Tibet plateau. Soil Biology and Biochemistry, 41(12), 2493–2500.

    Article  CAS  Google Scholar 

  • Ma, Y. S., Lang, B. N., Li, Q. Y., Shi, J. J., & Dong, Q. M. (2002). Study on rehabilitating and rebuilding technologies for degenerated alpine meadow in the Yangtze and Yellow River source region. Pratacultural Science, 19, 1–15.

    Google Scholar 

  • Ma, Y. S., & Li, Y. F. (1999). The present status of the grassland eco-environment at the headwater areas of Qinghai–Tibetan Plateau and resume strategies of degraded grassland. Grassland of China, 6, 59–61.

    CAS  Google Scholar 

  • Ma, Y. S., Shang, Z. H., Shi, J. J., Dong, Q. M., Wang, Y. L., & Yang, S. H. (2006). Studies on communities diversity and their structure of “black-soil-land” degraded grassland in the headwater of Yellow River. Pratacul Tural Science, 23, 6–11.

    Google Scholar 

  • Moen, J., & Oksanen, L. (1998). Long-term exclusion of folivorous mammals in two arctic–alpine plant communities: a test of the hypothesis of exploitation systems. Oikos, 82, 333–346.

    Article  Google Scholar 

  • Mulder, C., & Ruess, R. W. (1998). Effects of herbivory on arrowgrass: interactions between geese, neighboring plants, and abiotic factors. Ecological Monographs, 68, 275–293.

    Article  Google Scholar 

  • Olofsson, J. (2009). Effects of simulated reindeer grazing, trampling, and waste products on nitrogen mineralization and primary production. Arctic, Antarctic, and Alpine Research, 41, 330–338.

    Article  Google Scholar 

  • Olofsson, J., Hulme, P. E., Oksanen, L., & Suominen, O. (2004). Importance of large and small mammalian herbivores for the plant community structure in the forest tundra ecotone. Oikos, 106, 324–334.

    Article  Google Scholar 

  • Olofsson, J., Hulme, P. E., Oksanen, L., & Suominen, O. (2005). Effects of mammalian herbivores on revegetation of disturbed areas in the forest-tundra ecotone in northern Fennoscandia. Landscape Ecology, 20, 351–359.

    Article  Google Scholar 

  • Olofsson, J., Moen, J., & Oksanen, L. (2002). Effects of herbivory on competition intensity in two arctic–alpine tundra communities with different productivity. Oikos, 96, 265–272.

    Article  Google Scholar 

  • Olofsson, J., & Okasnen, L. (2002). Role of litter decomposition for the increased primary production in areas heavily grazed by reindeer: a litterbag experiment. Oikos, 96, 507–515.

    Article  Google Scholar 

  • Onipchenko, V. G., & Semenova, G. V. (1995). Comparative analysis of the floristic richness of alpine communities in the Caucasus and the Central Alps. Journal of Vegetable Science, 6, 299–304.

    Article  Google Scholar 

  • Onipchenko, V. G., Semenova, G. V., & van der Maarel, E. (1998). Population strategies in severe environments: Alpine plants in the northwestern Caucasus. Journal of Vegetable Science, 9, 27–40.

    Article  Google Scholar 

  • Petillon, J., Georges, A., Canard, A., Lefeuvre, J., Bakker, J. P., & Ysnel, F. (2008). Influence of abiotic factors on spider and ground beetle communities in different salt-marsh systems. Basic and Applied Ecology, 9, 743–751.

    Article  Google Scholar 

  • Ren, J. Z. (1998). Research methods of grassland science. Beijing: China Agricultural.

    Google Scholar 

  • Shang, Z. H., & Long, R. J. (2007). Formation causes and recovery of the “black soil type” degraded alpine grassland in Qinghai–Tibetan Plateau. Frontiers of Agriculture in China, 1(2), 197–202.

    Article  Google Scholar 

  • Sobek, A. A., Schuller, W. A., Freeman, J. R., & Smith, R. M. (1978). Field and laboratory methods applicable to overburdens and minesoils. Cincinnati: Industrial Environmental Research Laboratory.

    Google Scholar 

  • ter Braak, C. J. F. (1986). Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 1167–1179.

    Article  Google Scholar 

  • ter Braak, C. J. F., & Smilauer, P. (2002). CANOCO reference manual and CanoDraw for Windows User’s Guide: software for canonical community ordination (Version 4.5). Ithaca: Microcomputer Power.

  • Tong, C. (2000). The study on the grassland degradation index. Journal of Inner Mongolia University (Acta Scientiarum Naturalium Universitatis NeiMongol), 31(5), 508–512.

    Google Scholar 

  • Walker, D. A., & Walker, M. D. (1991). History and pattern of disturbance in Alaskan arctic terrestrial ecosystems: a hierarchical approach to analysing landscape change. Journal of Applied Ecology, 28, 244–276.

    Article  Google Scholar 

  • Wang, C. T., Long, R. J., Wang, Q. L., Cao, G. M., Shi, J. J., & Du, Y. G. (2008). Response of plant diversity and productivity to soil resources changing under grazing disturbance on an alpine meadow. Acta Ecologica Sinica, 28, 4144–4152.

    Article  CAS  Google Scholar 

  • Wang, G. X., & Chen, G. D. (2001). Characteristics of grassland and ecolocal changes of vegetations in the Source Regions of Yangtze and Yellow Rivers. Journal of Desert Research, 21, 101–107.

    CAS  Google Scholar 

  • Wang, G. X., Wang, Y. B., Qian, J., & Wu, Q. B. (2006). Land cover change and its impacts on soil C and N in two watersheds in the center of the Qinghai–Tibetan Plateau. Mountain Research and Development, 26, 153–162.

    Article  Google Scholar 

  • Wen, L., Dong, S. K., Li, Y. Y., Li, X. Y., Shi, J. J., & Dong, Q. M. (2012). The impact of land degradation on the C pools in alpine grasslands of the Qinghai–Tibet Plateau. Plant and Soil. doi:10.1007/s11104-012-1500-4.

  • Wiesmeier, M., Steffens, M., Kölbl, A., & Kögel-Knabner, I. (2009). Degradation and small-scale spatial homogenization of topsoils in intensively-grazed steppes of Northern China. Soil and Tillage Research, 104(2), 299–310.

    Article  Google Scholar 

  • Xu, C. H., Shang, Z. H., Ma, Y. S., & Long, R. J. (2008). Analysis of interspecific association in degraded meadow communities in the headwater area of Yellow River on Tibetan Plateau. Acta Botanica Boreali-Occidentalia Sinica, 28(6), 1222–1227.

    Google Scholar 

  • Zhang, G., Kang, Y., Han, G., Mei, H., & Sakurai, K. (2011). Grassland degradation reduces the carbon sequestration capacity of the vegetation and enhances the soil carbon and nitrogen loss. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 61(4), 356–364.

    Article  CAS  Google Scholar 

  • Zhou, H. K., Tang, T. H., Zhao, X. Q., & Zhou, L. (2006). Long-term grazing alters species composition and biomass of a shrub meadow on the Qinghai–Tibet Plateau. Pakistan Journal of Botany, 38(4).

  • Zhou, H. K., Zhao, X. Q., Tang, Y. H., Gu, S., & Zhou, L. (2005). Alpine grassland degradation and its control in the source region of the Yangtze and Yellow Rivers, China. Grassland Science, 51(3), 191–203.

    Article  Google Scholar 

  • Zhou, H. K., Zhou, L., Zhao, X. Q., Liu, W., Yan, Z. L., & Shi, Y. (2003). Degradation process and integrated treatment of “black soil beach” grassland in the source regions of Yangtze and Yellow Rivers. Chinese Journal of Ecology, 22, 51–55.

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the grants from the Ministry of Science and Technology, China (2012BAC01B02) and the Ministry of Environmental Protection, China (201209033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi Kui Dong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 150 kb)

Appendix

Appendix

Abbreviation

Full name of species

Aco gym

Aconitum gymnandrum

Aco pen

Aconitum pendulum

Aco tan

Aconitum tangutcum

Aja ten

Ajania tenuifolia

Aju lup

Ajuga lupulina

All chr

Allium chrysanthum

All cya

Allium cyaneum

Ana lac

Anaphalis lactea

And ala

Androsace pomatosace

And inc

Androsace integra

Ane kan

Anemone kansuensis

Art fri

Artemisia frigida

Art san

Artemisia santolinaefolia

Ast spe1

Astragalus spp.

Ast tat

Aster tataricus

Ast wei

Astragalus weigoldianus

Bra jun

Brassica juncea

Cal pal

Caltha palustris

Car alr

Carex atrofusca

Car bre

Caragana brevifolia

Car car

Chamaesium carvi

Car moo

Carex moorcroftii

Car sab

Carex sabulosa

Car sca

Carex scabrirostris

Cha ang

Chamaenerion angustifolium

Cha par

Chamaesium paradoxum

Che ilj

Chenopodium iljinii

Cle chi

Cleistogenes chinensis

Col lon

Coluria longifolia

Cor cri

Corydalis cristata

Cot rou

Cotoneaster rotundifolius

Cre dis

Cremanthodium discoideum

Cre lin

Cremanthodium lineare

Dau car

Daucus carota

Dau spe1

Daucus spp.

Del cae

Delphinium caeruleum

Des sop

Descurainia sophia

Dra het

Dracocephalum heterophyllum

Dra nem

Draba nemorosa

Els den

Elsholtzia densa

Ely nut

Elymus nutans

Eup fis

Euphorbia fischeriana

Fcs ovi

Festuca ovina

Fcs sin

Festuca sinensis

Gal ver

Galium verum

Gen aqu

Gentiana aquatica

Gen mac

Gentiana macrophylla

Gen pal

Gentianopsis paludosa

Gen sin

Gentiana sino

Gen spa

Gentiana spathulifolia

Ger pyl

Geranium pylzowianum

Gla mar

Glaux maritima

Gue uni

Gueldenstaedtia multiflora

Hel tib

Helictotrichon tibeticum

Hip rha

Hippophae rhamnoides

Iri gin

Iris ginghainica

Kob cap

Kobresia capillifolia

Kob hum

Kobresia humilis

Kob pyg

Kobresia pygmaea

Koe cri

Koeleria cristata

Koe isl

Koenigia islandica

Lag bre

Lagotis brevituba

Lam rot

Lamiophlomis rotata

Lan tib

Lancea tibetica

Leo leo

Leontopodium leontopodi

Leo nan

Leontopodium nanum

Lig vir

Ligularia virgaurea

Lon min

Lonicera minuta

Mec sep1

Meconopsis spp.

Med lup

Medicago lupulina

Mor chi

Morina chinensis

Not inc

Notopterygium incisum

Oxy kan

Oxytropis kansuensis

Oxy och

Oxytropis ochrocephala

Par pal

Parnassia palustris

Par tri

Parnassia trinervis

Ped ala

Pedicularis alaschanica

Ped kan

Pedicularis kansuensis

Ped lon1

Pedicularis longiflora var.

Ped lon2

Pedicularis longiflora

Ped pil

Pedicularis pilostachya

Pla dep

Plantago depressa

Poa ann

Poa annua

Pol sib

Polygonum sibiricum

Pol sph

Polygonum sphaerostachyum

Pol ste

Polygonum stenophyllum

Pol viv

Polygonum viviparum

Pot ans

Potentilla anserina

Pot chi

Potentilla chinensis

Pot fru

Potentilla fruticosa

Pot ser

Potentilla sericea

Prz tan

Przewalskia tangutica

Pti dic

Ptilagrostis dichotoma

Ran hir

Ranunculus hirtellus

Ran lin

Ranunculus lingua

Ran tan

Ranunculus tanguticus

Rhe pum

Rheum pumilum

Rho sim

Rhododendron simsii

Rub cor

Rubia cordifolia

Sal alp

Salix cupularis

Sau gra

Saussurea graminea

Sau hao

Saussurea haon

Sau hao

Saussurea haoi

Sau jap

Saussurea japonica

Sau ste

Saussurea stella

Sau sup

Saussurea superba

Sax atr

Saxifraga atrata

Sax sto

Saxifraga stolonifera

Sci dis

Scirpus distigmaticus

Sci str

Scirpus strobilinus

Scn kas

Senecio kaschkarowii

Sib ang

Sibiraea angustata

Sil rep

Silene repens

Sil ten

Silene tenuis

Sor hoo

Soroseris hookeriana

Spi alp

Spiraea alpina

Ste cha

Stellera chamaejasme

Ste med

Stellaria media

Sti cap

Stipa capillata

Sti kry

Stipa krylovii

Sti pur

Stipa purpurea

Swa sal

Swainsona salsula

Swe bif

Swertia bifalia

Tar mon

Taraxacum monogolicum

Tar spe1

Taraxacum spp.

Tha alp

Thalictrum alpinum

The lan

Thermopsis lanceolata

Tro pum

Trollius pumilus

Ver did

Veronica didyma

Vio phi

Viola philippica

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, L., Dong, S.K., Li, Y.Y. et al. The effects of biotic and abiotic factors on the spatial heterogeneity of alpine grassland vegetation at a small scale on the Qinghai–Tibet Plateau (QTP), China. Environ Monit Assess 185, 8051–8064 (2013). https://doi.org/10.1007/s10661-013-3154-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3154-y

Keywords

Navigation